

Isoprene can play a pivotal role in tropospheric air chemistry. In our changing climate, isoprene is expected to significantly contribute to the feedback between climate change and biogeochemical processes; therefore, it is worthwhile to study the effect of a changing climate on physiology isoprene the and emissions of trees. In this experiment, several species of isoprene-emitting oak trees are isolated in a Teflon foil chamber and subjected to different levels of soil moisture and ozone exposure to observe and analyze their changes in physiology and emissions. Using the data from this chamber, a relationship between environmental stresses and isoprene emissions can be determined for the species used in the experiment.

OBJECTIVES

- To create a controlled setting for live plant analysis using a Teflon foil chamber and light assembly.
- 2) To sample, record, and analyze gas composition and plant growth variables using a data logger
- 3) To manipulate the plant's growth conditions, such as soil moisture and ozone concentration in the chamber, in order to simulate environmental stresses

REFERENCES

- Fang, C., R. Monson, and E. Cowling, 1996: Isoprene emission, photosynthesis, and growth in sweetgum (liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. *Tree Physiology*, 16, 441-446.
- 2) Pegoraro, E., A. Rey, J. Greenburg, P. Harley, J. Grace, Y. Malhi, and A. Guenther, 2004: Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. *Atmospheric Environment*, **38**, 6149-6156.

 [O₃] of 40, 60, and 80 ppb was established in chamber
 P_n, stomatal conductance, and isoprene flux did not change significantly during the ozone testing
 Higher [O₃] exposure has not been conducted in the chamber

Physiology and Isoprene Emissions of Drought-Stressed and Ozone Exposed Plants in a Laboratory Chamber Amanda S. Harte¹, Garrett L. Haas², and Gunnar W. Schade¹ Texas A&M University – ¹ Department of Atmospheric Sciences, ² Environmental Geosciences Program

DROUGHT STRESS

OZONE EXPOSURE

	After 10 days:	After 14 days:
D ₂ Flux	75% reduction	100% reduction
O Flux	75% reduction	85% reduction
H ₈ Flux	40% reduction	90% reduction

 Sample was rewatered on 14th day
 A response in CO₂, H₂O, and C₅H₈ flux was not observed after rewatering (see Conclusions)

SM data is non-calibrated

CHAMBER SETUP

- Experiments are conducted in a Teflon foil chamber of adjustable volume (approx. 200-250 L)
- 12 daylight LED bulbs provide adjustable illumination; filtered and humidified compressed air is used
- A CR-23X data logger records CO,
 CO₂, H₂O, and O₃ concentrations
- Soil moisture, chamber temperature and humidity, and leaf temperature are recorded
- Isoprene samples are taken with Tenax cartridges and analyzed using a thermal desorber and gas chromatography flame ionization detection (TD-GC-FID).

CONCLUSIONS

- Analysis of drought stress testing supports previous research of drought's effect on plant emissions 1, 2
- Some uncertainty of drought stress results due to the plant's senescence at the end of the experiment
- Analysis of ozone exposure testing does not indicate a significant effect on fluxes at the tested O₃ exposures for this species (life oak)

ACKNOWLEDGMENTS

The research presented in this poster was funded by a grant from the National Science Foundation, NSF-ATM0955438

CONTACT

Amanda S. Harte Meteorology, Class of 2015 aharte@email.tamu.edu

Dr. Gunnar W. Schade gws@geos.tamu.edu