
TAMU 2013 Freshman-Sophomore Math Contest

Solutions Freshman Version

While the name of the contest is traditional, the actual eligibility rules are
that first year students take the freshman contest, and second year students take
the sophomore contest. That way, students who have accummulated enough
credit hours in their first or second year to have standing as sophomores, or
juniors, are not promoted out of eligibility.

The first page contains problems built around Calculus I and II for both
freshmen and sophomores. The second pages are pitched to content unique to
Calculus III and/or Differential Equations, in the case of the sophomore contest.

In all cases, solutions should be written out and should include reasoning
behind the steps when reasons beyond routine calculation are involved. No
tables, calculators, or computers, and no devices for communication with the
outside world, are allowed. You’re on your own.

1. Find

lim
x→∞

ln
(

1 + e2x + e4x
)

ln (6 + e8x + e10x)
.

Solution: Observe that eax +ebx is dominated by the term associated with
the larger of a and b. Thus limx→∞(1 + e2x + e4x)/e4x = 1, and likewise,
(6+e8x +e10x)/e10x tends to 1. Thus the logs of these ratios tend to zero,
or equivalently, the difference between ln(6+ e8x + e10x) and ln e10x tends
to zero.

Our numerator thus amounts to 4x + stuff that goes to zero, and the de-
nominator, to 10x + stuff that goes to zero, so the limit is 2/5 and that is
our answer.

2. Let f(x) = tan(ln(cos x + sin x)) (where defined—there will be points at
which the definition of f breaks down).

(a) Find a formula for f ′(x) which holds where f is defined.

Solution: By the chain rule, the derivative is

f ′(x) = (cos x − sin x) ·
1

cos x + sin x
· sec2 ln(cos x + sinx).

(b) Find the number nearest 0 at which f is not defined. There are
two things that can cause f to not be defined. First, the expression
whose log is required may be zero or negative. This happens when
sinx = − cos x, or equivalently, when tanx = −1. This occurs at
−π/4 and at 3π/4 and in general at −π/4+kπ where k is an integer.
The nearest of these is −π/4 itself.
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Second, the log may exist, but its tangent not exist because the log is
itself an odd integer multiple of π/2. Now, we must figure out where
log(cos x + sin x) = π/2,−π/2,−3π/2 and so forth. The first does
not occur because cos x + sin x =

√
2 cos(x − π/4) by trigonometry,

and
√

2 < π/2. The second does occur, because all we need is that
cos x + sin x be near enough zero that the log is strongly negative.

The nearest point will be where cos x+sin x = e−π/2, or equivalently,
where cos(x−π/4) = 2−1/2e−π/2. So, x−π/4 = − arccos(2−1/2e−π/2).
Why the minus sign? Because traditionally, arccos is defined on [0, π]
and we want a negative number for x − π/4 because we know our
answer is near −π/4 rather than near 3π/4.

Finally, the answer: x = π/4 − arccos(2−1/2e−π/2).

(c) Sketch the graph of f(x) on the interval (−π/4, 3π/4), indicating
such discontinuities as may exist. How many are there, in all, on
that interval? Why?

Solution: There are infinitely many points of discontinuity, one at
each place where cos x + sinx hits a small number near enough zero
that its log takes the form −k/pi/2. These will cram up against the
endpoints of our interval −/pi/4 and /pi/4.

The graph will thus look like this in the middle, and zooming in, at
the edges:
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3. Find, accurate to within ±0.0001, the numerical value as a decimal of the
form a.bcd of

∫ 1

x=0

1

x
sin(x2) dx.

Solution: this is a job for Ceres, Goddess of the Harvest! (Here, spelled
Series.) The series expansion of sin z is

sin z = z −
z3

3!
+

z5

5!
− · · · .

(To the question, how am I supposed to know that?—the answer must
be, by rote. Like the times table. It’s a basic fact that crops up so
frequently that knowing it is indispensable.) Anyhow, with some manip-

ulation, sinx2 = x2 − x6

3! + x10

5! + · · · , and (1/x) sin x2 = x− x5

3! + x9

5! − · · · .
Now this can be integrated term by term, with the result that the required
definite integral is given by a rapidly converging, alternating sum with a
value A = 1

2 − 1
6·3! + 1

10·5! − · · · . We have enough terms already and it is
time for some arithmetic: 1

2 − 1
36 + 1

1200 = 1800−100+3
3600 = 1703

3600 = 0.4731,
rounded up to the nearest ten-thousandth. The actual value is nearer
0.473042, or if you want lots and lots of places,

A =0.473041535183591507470676656911589828906

16897736905589523572738678334 351827039896

4. Let

A =

∫ 1

x=0

(

1 −
1

x2

)

e−(x+1/x) dx.

(a) Prove that the improper integral defining A converges.

Solution: The improper integral is by definition the limit as R tends
to zero from above of

lim
R→0+

∫ 1

x=R

(

1 −
1

x2

)

e−(x+1/x) dx.
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The integrand inside the limit is negative and greater than −(1/x2)e−1/x,
so all we need is to show that with that for the new integrand, the
expression converges. With the change of variable y = 1/x, our in-

tegral becomes −
∫ 1

y=1/R
e−y dy which tends to a finite value. Which

finite value is immaterial, but, for the record, it s 1/e − 1. Thus the
original integral is a convergent improper integral. (The key fact was
that the e−1/x was tending to zero more strongly than the fraction
1/x2 was tending to infinity, at x = 0.)

(b) Evaluate A.

With the change of variable u = x + 1/x, we have du = 1 − 1/x2

and our integral becomes
∫ 2

u=∞
e−u du. Rearranging the limits of

integration to the traditional lower first and flipping signs, we get
−e−2 for our answer. That is, A = −e−2.

5. Determine, with proof, whether

∞
∑

n=2

2n

n! − (n − 1)!

converges. Solution: First note that for n ≥ 2, n! = n(n − 1) so that
n! ≥ 2(n − 1)!. The denominator is thus at least (1/2)n!. Our sum is
thus a sum of positive terms, yet less than

∑

∞

n=2 2n−1/n!. The ratio of
n+1th term to nth term in this new sum is 2/(n+1) which tends to zero,
so by the ratio test, the new and larger sum converges, and thus by the
comparison test, the original sum converges.

6. Find the area of the finite region enclosed by the graph of the equation

y2 = x2(x + 3).
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Solution: The upper and lower bounding curves are ± − x
√

x + 3, as x

goes from −3 to 0. Thus the area is 2
∫ 0

x=−3
−x

√
x + 3 dx. With the

change of variable u = −x, this becomes +2
∫ 3

u=0
u
√

3 − u du, and on
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the general principle that difficulties should be spread out rather than
piled all in one corner, we make the substitution v = 3 − u. This gives

2
∫ 3

v=0
(3 − v)

√
v dv = 2

∫ 3

v=0
3v1/2 − v3/2 dv = 24

√
3/5.
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