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1. Two villages A and B are located on one side of a river with healing water. The
river bank is a straight line. Alice lives in village A and her friend Bob lives in
village B. One day Alice felt sick and she called Bob by phone asking him to bring
her some fresh healing water from the river. So, Bob needs to go from village B to
village A visiting the river. He decided to choose the shortest possible path to do
this. Describe this path geometrically.

Solution: (illustrated by Fig. 1)

Assume that the river is represented by the line `. Let A′ be the point obtained
from A by reflection with respect to the line `.

Fig.1

From the fact that the shortest path between two points on a plane is the segment
of the straight line connecting these points it follows that if the required shortest
path meets ` at a point P , then this path must be along the broken line BPA. By
the construction of A′ we have |AP | = |A′P |, so the length of the broken line BPA
is equal to the length of the broken line BPA′ which is not smaller than |BA′| and
is equal to it if and only if this broken line is a segment of a straight line, i.e. when
P is the point of intersection of A′B with the line ` (this point is denoted by P̃ on
Fig.1).

Hence the required shortest path is along the broken line BP̃A, where P̃ is the point
of intersection of A′B with the line `.

�
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The following Lemma will be important in the sequel:

Lemma 1. In the notations of the solution of Problem 1 the following properties
hold:

(a) The angle between P̃B and ` is equal to the angle between P̃A and `, i.e. for
the shortest path (and only for this path) the angle in which the path meets `
(the angle of incidence) is equal to the angle of departure from ` (the angle of
reflection), i.e. as in the law of reflection in Geometric Optics or in billiards
(see Fig. 2).

Fig.2

(b) If P 6= P̃ , then by shifting P toward P̃ the length of the brocken line APB is
decreased.

Proof. 1. The first statement follows immediately from the construction in the
solution of problem 1 (see Fig. 1):∠AP̃P = ∠A1P̃P and the latter is equal to the

angle between ` and P̃B.

2. To prove the second statement we can assume that the line ` is in the direction
of x-axis and the point A has coordinates (0, h1) (we can apply an appropriate rigid
motion to achive this). Assume that point B has coordinates (a, h2) and the point
P has coordinates (x, 0) (see Fig 3).

Fig. 3

Then the length of the broken line APB is described by the following function

f(x) =
√
x2 + h21 +

√
(a− x)2 + h22.
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Then

f ′(x) =
x√

x2 + h21
−

a− x√
(a− x)2 + h22

and f ′(x) = 0 if and only if
x

h1
=
a− x
h2

. The latter equation has the unique solution

x = x̃ that corresponds to the point P̃ constructed in the solution of problem 1.
By problem 1 x̃ is the global minimum of the function f and the fact that it is the
unique critical point of f implies the statement of the lemma: the function f is
strictly decreasing for x < x̃ and strictly increasing for x > x̃.

2. (a) An ant sits at a point M inside of a given acute angle in the plane. He needs to
visit one side of the angle, then the other side of the angle, and then to return
to M (note that visiting the vertex of the angle is considered as visiting both
sides) . Describe geometrically the shortest path to perform this task.

(b) Solve the same problem if the angle is obtuse or right.

Solution of item (a) (illustrated by Fig. 4) Denote the rays of the angle by `1
and `2 and the vertex of the angle by O. By analogy with the previous problem let
M1 and M2 be the reflections of M with respect to `1 and `2, respectively. Since
the angle is acute, the angle ∠M1OM2 is less than π (it is double of the original
angle). Therefore the segment M1M2 intersects rays `1 and `2. Denote the points

of intersection by P̃1 and P̃2, respectively.

Fig. 4

Suppose that the ant visits `1 at point P1 and visits `2 at point P2, then to travel
along the shortest path he must go along the triangle MP1P2. Since by constructions
MP1 = M1P1 and MP2 = M2P2, the perimeter of the triangle MP1P2 is equal to
the length of the broken line M1P1P2M2. The latter is not smaller than |M1M2|
and is equal to it if and only of P1 = P̃1 and P2 = P̃2.

Therefore, the shortest path is along the triangle MP̃1P̃2, where P̃1 and P̃2 are the
points of intersection of the segment M1M2 with the rays `1 and `2 respectively.
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Solution of item (b) If the angle is right then the segment M1M2 will pass through
the vertex O of the angle (i.e P1 = P2 = O), so the shortest path will be first going
along the segment MO and then back, which will be denote by MOM for shortness.

In the case of obtuse angle, in contrast to the previous cases, the segment M1M2

will not intersect the ray `1 and `2 so the length of every paths performing the task
is strictly larger than |M1M2|. We claim that the shortest path in this case is the
same as in the right angle case, i.e. MOM . Indeed, if the path meets `1 at P1 and
`2 at P2 (the case when one or both of Pi is the vertex O is not excluded), then it
is not shorter than the broken line MP1P2M . So, the shortest path can be found
among those broken lines. Also , since the length of this line will go to infinity as
|OP1|+|OP2| goes to infinity, the shortest path exists by the extreme value theorem.
Now it is impossible for the shortest path that both P1 and P2 are different from
O, because in this case by Lemma 1 the path will satisfy the billiard property at
both P1 and P2. i.e. for each ray `i the angles of incidence and reflection from it
along the path are equal (otherwise, by Lemma 1 we can make the path shorter by
slightly moving Pi). But this may happen only if the points M1, P1, P2, and M2 lie
on the same line, which is impossible. So, one of the points Pi of the shortest path
must be a vertex O but this implies that the shortest path is MOM .

3. (a) An ant crawls inside an acute triangle ABC. His task is to move along a closed
path, visiting all sides of the triangle (if he visits a vertex it is considered as he
visited both sides adjacent to this vertex). He can start anywhere inside the
triangle. Describe the set of all points in which he can start to perform this
task along the shortest possible path. Describe this path geometrically.

(b) Solve the same problem if the triangle is not acute.

Solution of item (a): (illustrated by Fig. 5) Suppose that the ant meets the side
BC at the point M (we do not exclude that M is one of the vertices here). Then
we can repeat the constructions of the item (a) of the previous problem: The angle

∠BAC is acute, the shortest path is along the triangle MP̃1P̃2, where P̃1 and P̃2

are the points of intersection of the segment M1M2 with the rays AB and AC and
M1, M2 are the reflections of M with respect to the same rays, respectively. The
length of this path is equal to |M1M2|.
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Fig. 5

Now we have to choose the point M on the side BC such the length of the corre-
sponding segment M1M2 will be as short as possible. Note that the angle ∠M1AM2

is double of the ∠BAC independently of the choice of the point M , because by con-
structions ∠M1AB = ∠MAB and ∠M2AC = ∠MAC. Also, the triangle M1AM2

is isosceles, because
|AM1| = |AM | = |AM2| (1)

Therefore |M1M2| is minimal when |AM1| is minimal. By (1) it occurs when |AM |
is minimal among all M in BC, i.e. when AM is the altitude (here we also used the
fact that the triangle ABC is acute). In other words, the shortest path is unique
(up to the choice of the starting points) and it meets the side BC at the base of
the altitude from A. Repeating the same arguments for other sides we get that the
shortest path meets the side AB at the base of the altitude from C and it meets
the side AC at the base of the altitude from B.

Conclusion The required shortest path is the triangle with the vertices in the bases
of altitudes. This triangle is called orthic triangle. The ant must start at one of the
points of the orthic triangle.

Solution of item (b): Suppose that ∠A ≥
π

2
and the ants meets the side BC

at the point M (we do not exclude that M is one of the vertices here). Then by
the item (b) of the previous problem the shortest path (among the paths starting
at M) is the broken line MAM and therefore the shortest path of the problem is
MAM , where AM the altitude from the vertex A with obtuse angle. The ant must
start somewhere on this altitude. �

In problems 4-8 below an ant crawls inside a convex quadrilateral ABCD and
again his task is to move along a closed path, visiting all sides of the quadrilateral
(if he visits a vertex it is considered as he visited both sides adjacent to this vertex).
He can start anywhere inside the quadrilateral.
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4. Assume that the quadrilateral ABCD is a rectangle with sides of length a and b.
Describe geometrically the shortest paths among all paths which perform the task
and express the length of the shortest path in terms of a and b.

Solution (illustrated by Fig. 7) Assume the ant visits the side AB at the point E,
the side BC at the point F , the side CD at the point G and the side AD at the
point H (some of these points might be equal and coincide with a vertex). Since the
path is the shortest one it must be along the quadrilateral EFGH, because all other
ways to connect the points E, F , G, and H into a closed path will give a longer
path (see Fig. 7). Then the path of the ant is not shorter than the perimeter of
the quadrilateral EFGH (or , more precisely, than the length of the closed broken
line EFGHE if the quadrilateral degenerates to a triangle or a segment), because
all other ways to connect the points E, F , G, and H into a closed broken line will
give a longer path (see Fig. 6).

Fig. 6

Now let E1 be the reflection of E with respect to the line BC, E2 is the reflection
of E with respect the line AD, and finally E3 is the reflection of E2 with respect
to the line CD (see Fig. 6). Let H1 be the reflection of H with respect to the
line CD. By constructions, using the fact that a reflection with respect to the
line preserves the distances between points, |EF | = |E1F |, |GH| = |GH1|, and
|HE| = |HE2| = |H1E3|. Therefore the perimeter of the quadrilateral EFGH is
equal to the length of the broken line E1FGH1E3, i.e it is not shorter than |E1E3|.

Fig. 7

On the other hand the segment E1E3 intersects the sides BC and CD. Denote the
points of intersection by F̃ and G̃, respectively, and let H̃ be the point of intersection
of E2G with the side AD. Then the perimeter of the quadrilateral EF̃G̃H̃ is equal
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to |E1E3|, so that the quadrilateral EF̃ G̃H̃ is the shortest possible path. Note that
this is an inscribed parallelogram with sides parallel to the diagonals of
the rectangle. Also if E = B then this path degenerates to the broken line BDB
(i.e. the motion is along the diagonal BD and back) and if E = A, then this path
degenerates to the broken line ACA (i.e. the motion is along the diagonal AC and

back). The length of the shortest paths is equal to |E1E3| = 2|BD| = 2
√
a2 + b2 .

5. Assume that the quadrilateral ABCD satisfies the following condition: among all
paths that perform the task there is a path of shortest possible length which does
not meet a vertex of the quadrilateral. Prove that the quadrilateral ABCD can be
inscribed into a circle.

Proof. In the sequel by a quadrilateral inscribed in the quadrilateral ABCD we
mean a convex quadrilateral with all vertices lying on different sides of ABCD.

Definition 1. We say that a quadrilateral inscribed into the quadrilateral ABCD
satisfies the billiard property with respect to ABCD if it makes equal angles with
each side of the given quadrilateral ABCD

Now as a consequence of Lemma 1 we have the following

Lemma 2. The shortest inscribed quadrilateral EFGH must satisfy the billiard
property with respect to ABCD.

Proof. Assume by contradiction that the sides of EFGH adjacent to one of the
vertex, for example, the vertex E do not make equal angles with AB, then from
Lemma (1) by an arbitrary small shift E along the side AB (toward the point that
solves Problem with points F and H and the line ` connecting A and B) decreases
the length of the inscribed quadrilateral, contradicting the assumption on shortness
of EFGH.

So we can assume (see Fig. 8) that

∠AEH = ∠BEF = α,∠BFE = ∠CFG = β

∠CGF = ∠DGH = γ,∠DHG = ∠AHE = δ
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Fig. 8

Then ∠HEF = π− 2α, ∠EFG = π− 2β, ∠FGH = π− 2γ, and ∠GHE = π− 2δ,
which together with the fact that the sum of all angles in a quadrilateral is equal
to 2π implies that

α + β + γ + δ = π. (2)

On the other hand,

∠BAD = π − α− δ, ∠BCD = π − β − γ,
which together with (2) implies that

∠BAD + ∠BCD = π,

i.e. the sum of the opposite angles in the quadrilateral ABCD is equal to π, which
is equivalent to the fact that the quadrilateral ABCD can be inscribed into a circle.
Such quadrilaterals are also called cyclic.

6. Assume that the quadrilateral ABCD satisfies the condition of the previous prob-
lem, i.e., among all paths that perform the task, there exists a path of the shortest
possible length which does not meet a vertex of the quadrilateral. Show that among
all paths that perform the task there are infinitely many different shortest paths
(note that here we do not distinguish paths that trace the same closed curve with
different starting points and/or directions of motion). Describe how to construct
these shortest paths.

Solution

We start with the proof of several Lemmas.

8



Lemma 3. Fix a point E on the side AB. Let E1 be the reflection of E with respect
to the line BC, E2 is the reflection of E with respect the line AD, and finally E3 is
the reflection of E2 with respect to the line CD (see Fig. 7). Then the length of any
path performing the task and starting from E is not smaller than |E1E3|.

Proof. (illustrated by Fig. 9) First, for simplicity assume that a path Γ starting
at E does not meet a vertex of ABCD . Then it must contain at least one point
inside each side. Assume that Γ meets the side BC at a point F , the side CD at
a point G , and the side AD at a point H . The length of Γ is not smaller than the
perimeter of the quadrilateral EFGH. Let H1 be the reflection of H with respect
to the line CD. By construction, using the fact that a reflection with respect to
the line preserves the distances between points, |EF | = |E1F |, |GH| = |GH1|, and
|HE| = |HE2| = |H1E3|.

Fig. 9

Therefore the perimeter of the quadrilateral EFGH is equal to the length of the
broken line E1FGH1E3, i.e it is not shorter than |E1E3|. The case when Γ meets
a vertex of ABCD can be treated similarly: a path Γ can be replaced without
increasing the length by either a triangle with one vertex in a vertex of ABCD and
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two other vertices inside the sides which are not adjacent to the first vertex or by
a segment between two opposite vertices of ABCD elapsed twice. In both cases by
the same arguments the length of of the resulting path is not smaller than E1E3

(just some lags of the corresponding broken line will degenerate to points).

Lemma 4. Let Γ be a path which starts at E inside the side AB, does not meet a
vertex of the quadrilateral ABCD and it is the shortest path among all paths that
perform the task and start at E. Then the lower bound |E1E3| of the previous Lemma
is achieved on the Γ (in other words, the length of path Γ is equal to |E1E3|).

Fig. 10

Proof. (Illustrated by Fig. 10) By the same arguments as in the beginning of the
proofs of the previous problem and the previous lemma Γ must be the quadrilateral
EFGH, where F lies inside the side BC, G lies inside the side CD and H lies inside
the side AD (recall that E lies inside the side AB by the assumptions). Let H1 be
the reflection of H with respect to the line CD. Then from Lemma 2 it follows
that the points F , G, and H1 lie on the segment E1E3, i.e. the perimeter of the
quadrilateral EFGH is equal to |E1E3|.
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The last two lemmas give an explicit way to construct the shortest path which starts
at the point E inside the side AB :

Corollary 1. If there exists the shortest path as in the previous lemma, starting at
the point E inside the side AB then this path is the quadrilateral EFGH such that
F is the intersection of the segment E1E3 with the side BC, G is the intersection of
the segment E1E3 with the side CD, and H is the intersection of the segment E2G
with the side AD.

Now take another point E ′ on the side AB and construct from it the points E ′
1, E

′
2,

E ′
3 by the same series of reflections as we did for the point E in Lemma 3.

Lemma 5. (see Fig. 11) If the quadrilateral ABCD is cyclic, then the vectors
−−−→
E1E3

and
−−−→
E ′

1E
′
3 are equal. In particular, |E1E3| = |E ′

1E
′
3| and the lines E1E3 and E ′

1E
′
3

are parallel.

Fig. 11

11



Proof. Since E ′
1 and E ′

3 are obtained from E1 and E3 by a composition of three re-
flections and reflections preserve the distance between points, we have that |E3E

′
3| =

|E1E
′
1|.

It remains to prove that vectors
−−−→
E1E3 and

−−−→
E ′

1E
′
3 are in the same direction, i.e. that

the angle between these vectors is equal to 0. In general, by an angle ∠(~a,~b) between

two vectors ~a and~b we mean the signed angle (defined modulo 2π) with positive sign

corresponding to the counter-clockwise rotation from ~a to ~b. Note that if a vector
~a has an angle θ with a vector ~b, then the angle between ~a and its reflection with
respect to the line generated by b is equal to 2θ. Since, as was already mentioned,

the vector
−−−→
E3E

′
3 is obtained from the vector

−−−→
E1E

′
1 by three reflections, let us find the

angle between these vectors by studying the angles between consecutive reflections

of
−−−→
E1E

′
1.

The angle at the vertex X of the quadrilateral ABCD will be denoted by ∠X.
Without loss of generality we can assume that E is closer to B than E ′ (in this
proof the points E and E ′ have equal role). Then

• ∠
(−−−→
E1E

′
1,
−−→
CB
)

= π − ∠B. Therefore ∠
(−−−→
E1E

′
1,
−−→
EE ′) = 2π − 2∠B ≡ −2∠B;

• ∠
(−−→
EE ′,

−−→
DA
)

= −∠A. Therefore ∠
(−−→
EE ′,

−−−→
E2E

′
2

)
= −2∠A;

• Let A1 be the orthogonal projection of A to the line CD. Since ABCD is a
cyclic quadrilateral, ∠D = π − ∠B. Then

∠A1AD =

∣∣∣∣∣π2 − ∠D
∣∣∣∣∣ =

∣∣∣∣∣∠B − π

2

∣∣∣∣∣
(in Fig.11 the case of acute ∠B is shown). Further, treating the cases of
acute and obtuse ∠B separately, one gets the following uniform formulas

∠
(−−−→
E ′

2E2,
−−→
A1A

)
= ∠A+ ∠B −

π

2
and

∠
(−−−→
E2E

′
2,
−−→
CD

)
= −

(π
2
− ∠

(−−−→
E ′

2E2,
−−→
A1A

))
= ∠A+ ∠B − π.

Consequently,

∠
(−−−→
E2E

′
2,
−−−→
E3E

′
3

)
≡ 2∠A+ 2∠B.

Combining all three items together we get that

∠
(−−−→
E1E

′
1

−−−→
E3E

′
2

)
≡ −2∠A− 2∠B + 2∠A+ 2∠B = 0,

i.e.
−−−→
E1E

′
1 and

−−−→
E3E

′
3 are in the same direction.
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As a consequence of the previous lemma we have the followng

Corollary 2. For a cyclic quadrilateral ABCD the lower bound given by Lemma
3 for the length of the paths performing the task and starting at a point E of the
side AB is in fact independent of this point, i.e. it is the lower bound for all paths
performing the task.

Note that in general not for every point E on the side AB we can implement the
construction of Corollary 1: for example, E1E3 may not even intersect the sides BC
(or the constructions of Corollary 1 may fail in every other step). However, from
the assumpion of the problem and Lemma 4 it follows that there exists a point E
inside AB for which the constructions of Corollary 1 can be implemented. Then it
can be implemented for any point E ′ sufficiently close to E, i.e. for E ′ sufficiently
closed to E the segment E ′

1E
′
3 intersects the side BC at a point F ′ and the side CD

at a point G′, while the segment E ′
2G

′ intersects the side AD at a point H ′ and the
quadrilateral E ′F ′G′H ′ has length |E ′

1E
′
3| = |E1E3| by Lemma 5, i.e. this is also

the shortest path different from EFGH. This shows that we have infinitely many
different shortest paths.

Note that by construction the corresponding sides of the quadrilaterals E ′F ′G′H ′

and EFGH are parallel, i.e. E ′F ′ ‖ EF , F ′G′ ‖ F ′G′, G′H ′ ‖ GH, and H ′E ′ ‖ HE.
Therefore (see Fig. 12) in order to construct a new shortest path E ′F ′G′H ′ from
the known shortest path EFGH (where E and E ′ inside AB) we can proceed as
follows: First draw through E ′ the line parallel to EF . If the point F ′ of intersection
of this line with the line BC does not lie inside the side BC we stop. If it lies inside
the side BC, then draw through F ′ the line parallel to FG. If the point G′ of
intersection of this line with the line CD does not lie inside the side CD we stop.
If it lies inside the side CD, then draw through G′ the line parallel to GH. If the
point H ′ of intersection of this line with the line AD does not lie inside the side AD
we stop. If it lies we are done with the construction of the required new shortest
path E ′F ′G′H ′. For E ′ sufficiently closed to E we can implement the construction
to the end without stopping. Finally note that if some vertices in the constructed
family of shortest quadrilaterals approach to a vertex of the quadrilateral ABCD
then the shortest inscribed quadrilaterals can degenerate to a triangles and even to
a segment between two opposite vertices, when we move along the segment twice
in opposite directions, as in the case of the rectangle of Problem 4. With these
degenerate cases we will get all possible shortest paths.
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Fig. 12

7. Assume that the quadrilateral ABCD can be inscribed into a circle and the vertices
do not belong to any semicircle. For such a quadrilateral, prove that among all
paths that perform the task there is a path of shortest possible length which does
not meet a vertex of the quadrilateral.

Proof. First we prove the following Lemma:

Lemma 6. If the quadrilateral ABCD can be inscribed into a circle, then any
quadrilateral which satisfies the billiard property with respect to ABCD is the short-
est path among all paths performing the task, i.e. in this case the converse of Lemma
2 holds true.

Proof. Assume that the quadrilateral EFGH satisfies the billiard property with
respect to ABCD with vertex E lying inside the side AB. Then, as in the proof of
Lemma 4, the perimeter of EFGH is equal to |E1E3| in the notation of Lemma 3,
but the latter is the lower bound for all paths performing the task by Corollary 2.
Therefore EFGH is the shortest path.

So, we need to find at least one quadrilateral satisfying the billiard property with
respect to ABCD. Let K be the point of intersection of the diagonals AC and BD.
Let E , F , G, and H are the perpendicular projections of K onto the lines AB, BC,
CD, and AD (see Fig. 13).
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Fig.13

The condition that the vertices of ABCD do not belong to any semicircle ensures
that these projections lie inside the corresponding sides of ABCD, because in the
triangles AKB, BKC, CKD, and AKD the angle of the vertices that are also
vertices of the quadrilateral ABCD are acute.

Let us prove that the the quadrilateral EFGH satisfies the billiard property. Prove,
for example, that ∠EFB = ∠GFC. In the quadrilateral EBFK two angles are
right, so it can be inscribed to a circle, therefore ∠KFE = ∠EBF (= ∠ABD)
as supported by the same arc in this circle. In the same way, ∠KFG = ∠KCG
(= ∠DCA). Note that ∠ABD = ∠DCA as supported by the same arc in the
cyclic quadrilateral ABCD. This proves that ∠KFE = ∠KFG, which implies that
∠EFB = ∠GFC. The billiard properties for other vertices of EFGH are proved
in the same way.

8. Assume that the quadrilateral ABCD cannot be inscribed into a circle. Describe
the algorithm to find the shortest path among the paths performing the task (you
can use the fact that the shortest path exists without justifying it).

Solution By problem 5 the shortest path must meet a vertex of ABCD. Therefore
we can proceed as follows: first construct the shortest path among all paths per-
forming the task and starting from the given vertex and then compare the resulting
paths obtained from the analysis of each of the four vertices.

Let us describe how we find the shortest path among all admissible paths starting
at vertex A. In this case the shortest path is a triangle AFG with E on the side
CB and G on the side CD. We can proceed similarly to the Problem 2: the only
difference is that in Problem 2 we do not require that the points E and F lie on
the sides but on the rays from C, generated by the sides . So here, with additional
restrictions, we have to consider more cases.
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If the angle C is right or obtuse then by problem 2(a) the required shortest path is
ACA.

If the angle C is acute take the reflection A1 of A with respect to the line BC and
the reflection A2 of A with respect to the line CD (see Fig. 14).

Fig. 14

Assume that F and G are the points of intersection of the line A1A2 with the rays
CB and CD, respectively. Then

• If the points F and G lie inside the corresponding sides CB and CD of the
quadrilateral ABCD (as in Fig 14), then by problem 2(b) the required shortest
path is the triangle AFG;

• If one of the points , say F , is outside the side CB and G is inside the side
CD, (as in Fig 15), then by Lemma 1 the required shortest path is the triangle
ABG;

Fig.15
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• If both points F and G are outside the corresponding sides of the quadrilateral
ABCD, then again by Lemma 1 the required shortest path is the triangle ABD.
However, this path is not the shortest path among all paths performing the
task, because it is longer than the broken line BDB by the triangle inequality.

Repeat this algorithm for paths starting at each of other vertices B, C, and D, and
compare the length of the resulting shortest paths to get the shortest path required
in the problem.
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