Algebra Qualifying Examination 11 August 2021

Instructions:

- There are nine questions worth a total of 100 points.
- Read all problems first. Make sure that you understand each and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. State clearly any major theorems you use (hypotheses and conclusions). Justify your reasoning.
- Start each problem on a new page, clearly marking the problem number and your name on that page. Do 'scratch work' on a separate page.
- Rings always have an identity (otherwise they are rng) and all R-modules are left modules.
- (1) [13pts] Let V be a vector space of finite dimension n over a field F, and $T: V \to V$ an F-linear map.
 - (a) Assuming that F is algebraically closed, prove that V has at least n+1 T-invariant subspaces. (A subspace $W \subset V$ is T-invariant if $T(W) \subset W$.)
 - (b) Give an example showing the conclusion to (a) may be false when F is not algebraically closed.
 - (c) Suppose that T is diagonalizable over F and has n distinct eigenvalues. How many T-invariant subspaces does V have?
- (2) [12pts] Let G be a finite group of order greater than 2. Show that $|\operatorname{Aut}(G)| > 1$. (Hint: there are two cases: G is abelian and G is not abelian.)
- (3) [5pts] Define free abelian groups in terms of a universal property. Specifically, what does it mean for an abelian group F to be free on a set $B \subset F$?
- (4) [10] Let G be a group of order p^n , where p is a prime number and $n \ge 0$ an integer. Prove that for every integer p^t dividing p^n , G has a subgroup of order p^t . Hint: first show that when n > 0, G has a nontrivial center.
- (5) [10pts] Prove that in a principal ideal domain every irreducible element is prime.

- (6) [10pts] In each part of this problem determine if the given objects are isomorphic.
 - (a) \mathbb{R} and \mathbb{C} as \mathbb{Q} -vector spaces.
 - (b) \mathbb{C} and $\mathbb{R} \times \mathbb{R}$ as rings.
 - (c) $\mathbb{R}[x]/\langle x^2 1 \rangle$ and $\mathbb{R} \times \mathbb{R}$ as rings.
- (7) [12pts] Let R be an integral domain. Let I and J be ideals of R such that I + J = R.
 - (a) Show that $I \oplus J \cong (I \cap J) \oplus R$ as left R-modules. (Hint: Consider the natural map $I \oplus J \to R$.)
 - (b) If $I \cap J$ is a principal ideal, show that both I and J are projective R-modules.
- (8) [12pts] Suppose that the field E is a Galois extension of the field F of order $2021 = 43 \cdot 47$. Prove that there exist intermediate fields K, L between F and E that are Galois extensions of F, that generate E (KL = E) and are disjoint over F, $(K \cap L = F)$. (You may want to first understand Gal(E/F).)
- (9) [16pts] Let $\zeta = e^{2\pi i/5}$ be a fifth root of unity, and let $K = \mathbb{Q}(\zeta)$.
 - (a) Prove that K/\mathbb{Q} is a Galois extension.
 - (b) Let $G = \operatorname{Gal}(K/\mathbb{Q})$. For each $\sigma \in G$, show that $\sigma(\zeta) = \zeta^{a(\sigma)}$ for some $a(\sigma) \in (\mathbb{Z}/5\mathbb{Z})^{\times}$. Prove that the function $a: G \to (\mathbb{Z}/5\mathbb{Z})^{\times}$ is a group isomorphism.
 - (c) Let $L = \mathbb{Q}(\zeta, \sqrt[5]{3})$. Show that L/\mathbb{Q} is a Galois extension and that there is a group isomorphism

$$\varphi: \operatorname{Gal}(L/\mathbb{Q}) \xrightarrow{\sim} \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/5\mathbb{Z})^{\times}, b \in \mathbb{Z}/5\mathbb{Z} \right\}$$

$$\subseteq \operatorname{GL}_{2}(\mathbb{Z}/5\mathbb{Z}).$$

(Hint: For $\tau \in \operatorname{Gal}(L/\mathbb{Q})$, what is $\tau(\zeta)$? What can $\tau(\sqrt[5]{3})$ be?)