Applied/Numerical Analysis Qualifying Exam
August 13, 2010

Policy on misprints: The qualifying exam committee tries to proofread
exams as carefully as possible. Nevertheless, the exam may contain a few
misprints. If you are convinced a problem has been stated incorrectly, in-
dicate your interpretation in writing your answer. In such cases, do not
interpret the problem so that it becomes trivial.

Part 1: Applied Analysis

Instructions: Do any 3 of the 4 problems in this part of the exam. Show
all of your work clearly. Please indicate which of the 4 problems you are
skipping.

1. Let H be a complex (separable) Hilbert space, with (-,-) and || - || being
the inner product and norm.

(a) Define the term compact linear operator on H.

(b) Let K : H — H be compact. Show: If A # 0 is an eigenvalue of
K, then it has finite multiplicity.

2. Let (f,g) = f_ll f(@)g(x)w(z)dz, where w € C[—1,1], w(z) > 0, and
w(—z) = w(x). Let {¢n(x)}5°, be the orthogonal polynomials gener-
ated by using the Gram-Schmidt process on {1, z,z%...}. Assume that
¢n(x) = 2" + lower powers.

(a) Show that ¢, (—z) = (—1)"¢n(x).
(b) Show that ¢, is orthogonal to all polynomials of degree < n — 1.

(c) Show that ¢, (z) satisfies this recurrence relation:

¢n+1(x) = $¢n(I) - Cn(lﬁnfl(x% n Z 17 where Cp =

(P, T")
[ n1]?

3. Define D[g] = [, (¢ + q¢*)dx and H[¢] = [ $*dz. Throughout, we
require that ¢ € CV[0, 1] and that ¢(0) = 0.

(a) Let o > 0. Minimize D[¢] + 0¢*(1) subject to the constraint
H[¢] = 1. Find the resulting Sturm-Liouville eigenvalue problem,
including boundary conditions at x = 1.
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(b) State the Courant Minimax Principle. Consider Dirichlet bound-
ary conditons ¢(0) = 0, ¢(1) = 0. Order the first and second
second eigenvalues for the two problems; that is if a, b, ¢, d are the
four eigenvalues, then determine their aorder, a < b < ¢ < d.
Justify your answer.

4. Let S be Schwartz space and S’ be the space of tempered distributions.
The Fourier transform convention used here is f(w) = [, f(t)e™"dt.

(a) Define convergence in S. Sketch a proof: The Fourier transform
F is a continuous linear operator mapping S into itself. Briefly
explain how to use this to define the Fourier transform of a tem-
pered distribution. This fails for D’. Why?

(b) You are given that if T € &', then % = (—iw)*T, where k =
1,2,.... Let T(x) = 0 if = ¢ (0,3). On [0,3], let T be the linear
spline shown. Find 7. (Hint: What is 7"7)
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Part 2: Numerical Analysis

Instructions: Do all problems in this part of the exam. Show all of your
work clearly.

1. Consider the system

~Au- ¢ =f
u —Ap=g (1)
in the bounded, smooth domain €2, with boundary conditions u = ¢ = 0

on Of).

(a) Derive a weak formulation of the system (1), using suitable test
functions for each equation. Define a bilinear form a((u, o), (v, w))
such that this weak formulation amounts to

a((u, ), (v, ) = (f,v) + (g,)- (2)

(b) Choose appropriate function spaces for u and ¢ in (2).

(c) Show, that the weak formulation (2) has a unique solution. Hint:
Lax-Milgram.

(d) For a domain Q4 = (—d, d)?, show that
lul* < ed?|[Vul® (3)

holds for any function u € H}(Qy).

(e) Now change the second “-” in the first equation of (1) to a “+”.
Use (3) to show stability for the modified equation on €24, provided
that d is sufficiently small.

2. Consider the two finite elements (7,Q1,%) and (7, Q1 Y)), where 7 =
[—1,1]? is the reference square and
Ql = Span{lv z,Y, WJ},
@1 = span{l,:v,y,x2 — y2}.

Y = {w(-1,0),w(1,0),w(0,—1),w(0,1)} is the set of the values of a
function w(x,y) at the midpoints of the edges of 7.



(a) Which of the two elements is unisolvent? Prove it!

(b) Show that the unisolvent element leads to a finite element space,
which is not H'-conforming,.

3. Consider the following initial boundary value problem: find u(z,t) such
that
Up — Ugy +u = 0, O<zx<l1,t>0
u.(0,t) = u,(1,t) = 0, t>0

u(z,0) = g(z), O<az<l.

(a) Derive the semi-discrete approximation of this problem using lin-
ear finite elements over a uniform partition of (0,1). Write it as a
system of linear ordinary differential equations for the coefficient
vector.

(b) Further, derive discretizations in time using backward Euler and
Crank-Nicolson methods, respectively.

(c) Show that both fully discrete schemes are unconditionally stable
with respect to the initial data in the spatial L?(0, 1)-norm.



