Applied/Numerical Analysis Qualifying Exam

August 9, 2012

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name_

Combined Applied Analysis/Numerical Analysis Qualifier **Applied Analysis Part** August 9, 2012

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let ψ_j and ϕ_j , j = 1, ..., n, be in $L^2[0, 1]$. Assume the sets $\{\psi_j\}_{j=1}^n$ and $\{\phi_j\}_{j=1}^n$ are linearly independent. Consider the kernel $\kappa(x,y) = \sum_{j=1}^{n} \psi_j(x) \overline{\phi}_j(y)$.

- (a) Define the term *compact operator*.
- (b) Show that the operator $Ku = \int_0^1 \kappa(\cdot, y) u(y) dy$ is compact on $L^2[0, 1]$. (c) State and sketch a proof for the Fredholm alternative for compact operators on a Hilbert space.
- (d) With K as in part (b), show that the equation $(I \lambda K)u = f$ has an L²-solution for all $f \in L^2[0,1]$ if and only if $1/\bar{\lambda}$ is not an eigenvalue of the matrix A, where $A_{jk} = \langle \phi_j, \psi_k \rangle.$

Problem 2. Find the first term of the asymptotic series for $F(x) := \int_x^\infty t^x e^{-t} dt, \ x \to +\infty$.

Problem 3. Let n > 2 be an integer and let $x_j = j/n$, j = 0, ..., n. Consider the functional $J[y] = \frac{1}{2} \int_0^1 (y'')^2 dx$. The admissible functions are in $C^1[0, 1]$. On each closed interval $[x_j, x_{j+1}]$, they are in $C^4[x_j, x_{j+1}]$, for j = 0, ..., n-1. Finally, for each j, $y(x_j) = y_j$ is fixed.

(a) Assume that the functional is Fréchet differentiable. Show that for $\eta \in C^2[0,1]$, $\eta(x_i) = 0, \ i = 0, \dots, n$, one has

$$\Delta J[y,\eta] = \int_0^1 y^{(iv)} \eta dx + \sum_{j=0}^{n-1} y'' \eta' \Big|_{x_j^+}^{x_{j+1}^-}$$

(b) If the minimizer y of J exists, use the result above to show that y is a piecewise cubic spline that is in $C^{2}[0, 1]$.

Problem 4. Let $f \in L^2(\mathbb{R})$. Use the following formulas for the Fourier transform and its inverse:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 and $f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widehat{f}(\omega)e^{i\omega t}d\omega.$

- (a) Define the term *band-limited* function.
- (b) Show that if f is band-limited, then it is infinitely differentiable on \mathbb{R} . (Actually, it's analytic.)
- (c) State and prove the Shannon Sampling Theorem.

Applied/Numerical Analysis Qualifying Exam

August 9, 2012

Cover Sheet – Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name_

Combined Applied Analysis/Numerical Analysis Qualifier Numerical Analysis Part August 9, 2012

Problem 1. Consider the variational problem: find $u \in H^1(\Omega)$, such that a(u, v) = L(v) for all $v \in H^1(\Omega)$, where $\Omega = (0, 1) \times (0, 1)$, Γ is its boundary, and

(1.1)
$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy + \int_{0}^{1} u(s,0)v(s,0) \, ds \quad \text{and} \quad L(v) = \int_{\Gamma} gv \, ds.$$

Let $V_h \subset H^1(\Omega)$ be a finite dimensional space of conforming piece-wise linear finite elements (Courant triangles) over regular partition of Ω into triangles. For continuous v, w defined on $\widetilde{\Gamma} \subseteq \Gamma$, let the bilinear form $Q_{\widetilde{\Gamma}}(v, w)$ come from the quadrature

(1.2)
$$Q_{\widetilde{\Gamma}}(v,w) = \sum_{e \subseteq \widetilde{\Gamma}} \frac{|e|}{2} (v(P_1^e)w(P_1^e) + v(P_2^e)w(P_2^e)) \approx \int_{\widetilde{\Gamma}} vw \, ds$$

Here e is an edge of the triangulation of length |e| with end points P_1^e and P_2^e . Consider the FEM: find $u_h \in V_h$ such that

(1.3)
$$a_h(u_h, v) = L_h(v), \ \forall v \in V_h,$$

where $a_h(u_h, v)$ and $L_h(v)$ are defined from $a(u_h, v)$ and L(v) with the boundary integrals approximated using quadrature (1.2).

Complete the following tasks:

- (a) **Derive** the strong form to the problem (1.1).
- (b) **Prove** that the bilinear form a(u, v) is coercive on H^1 .
- (c) **Prove** that for $\widetilde{\Gamma} = \{(x, 0), 0 < x < 1\}$, there are constants c_1 and c_2 , independent of h, such that

$$c_1 Q_{\widetilde{\Gamma}}(v,v) \le \int_0^1 v(x,0)^2 dx \le c_2 Q_{\widetilde{\Gamma}}(v,v), \ \forall v \in V_h.$$

Note that this inequality and part (b) immediately imply

$$a_h(v,v) \ge \alpha \|v\|_{H^1(\Omega)}^2, \ \forall v \in V_h$$

for some $\alpha > 0$ independent of h.

(d) Apply Strang's First Lemma to **estimate the error** in H^1 -norm for the FEM (1.3). You may assume that g is as regular (smooth) as needed by your analysis and you can use (without proof) standard approximation properties for the finite element space V_h .

Problem 2. Consider the following initial boundary value problem: find u(x,t) such that

(2.1)
$$\begin{aligned} \frac{\partial}{\partial t}(u - \Delta u) - \mu \Delta u &= f, \ x \in \Omega, \ T \ge t > 0, \\ u(x, t) &= 0, \ x \in \partial \Omega, \ T \ge t > 0, \\ u(x, 0) &= u_0(x), \ x \in \Omega, \end{aligned}$$

where Ω is a polygonal domain in \mathcal{R}^2 , $\mu > 0$ is a given constant, and f(x,t) and $u_0(x)$ are given right hand side and initial data functions.

(a) **Derive** a weak formulation of this problem and derive an *a priori* estimate for the solution in the norm

(2.2)
$$\|u(t)\|_{H^1(\Omega)} = \left(\|u(t)\|_{L^2(\Omega)}^2 + \|\nabla u(t)\|_{L^2(\Omega)}^2\right)^{\frac{1}{2}}$$

in terms of the right-hand side and the initial data.

- (b) Write down the fully discrete scheme based on implicit (backward) Euler approximation in time and the finite element method in space with continuous piece-wise linear functions. Prove unconditional stability in the H^1 -norm for the resulting approximation.
- (c) Consider now the forward Euler approximation for the derivative in t. Find the Courant condition for stability of the resulting method in a norm of your choice.

Problem 3. Let \mathcal{T}_h be a partition of (0, 1) into finite elements of equal size h = 1/N, N > 1 an integer, and $x_i = ih$, i = 0, 1, ..., N. Consider the finite dimensional space V_h of continuous **piece-wise quadratic** functions on \mathcal{T}_h . The degrees of freedom on finite element (x_{i-1}, x_i) are

(3.1)
$$\left\{ v(x_{i-1}), \ v(x_i), \ \frac{1}{h} \int_{x_{i-1}}^{x_i} v \, dx \right\}.$$

- (1) Explicitly find the nodal basis of V_h over the finite element (x_{i-1}, x_i) , corresponding to these degrees of freedom.
- (2) **Prove** that

$$\sup_{\phi \in H^1(0,1)} \frac{\int_0^1 (u - \Pi_h u) \phi \, dx}{\|\phi\|_{H^1(0,1)}} \le Ch \, \|u - \Pi_h u\|_{L^2(0,1)}, \quad \forall u \in H^1(0,1).$$

Here $\Pi_h u$ is the finite element interpolant of u with respect to the nodal basis of V_h defined by (3.1).