Applied/Numerical Analysis Qualifying Exam

August 11, 2015

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name___

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 11, 2015

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Notation: \mathcal{H} denotes a complex, separable Hilbert space, with inner product and norm given by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$. $\mathcal{B}(\mathcal{H})$ and $\mathcal{C}(\mathcal{H})$ are, respectively, the set of bounded linear operators on \mathcal{H} and the set of compact linear operators on \mathcal{H} .

Problem 1. This problem is aimed at proving the Riemann-Lebesgue Lemma: If $f \in L^1[0,1]$, then $\lim_{\lambda\to\infty} \int_0^1 f(x)e^{i\lambda x}dx = 0$.

- (a) Show that if $p(x) = \sum_{k=0}^{n} a_k x^k$, then $\lim_{\lambda \to \infty} \int_0^1 p(x) e^{i\lambda x} dx = 0$.
- (b) State the Weierstrass Approximation Theorem. Use it and part (a) to show that for $g \in C[0, 1]$, $\lim_{\lambda \to \infty} \int_0^1 g(x) e^{i\lambda x} dx = 0$.
- (c) Use (a), (b) and the density of C[0,1] in L^1 to complete the proof.

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Let $\phi \in \mathcal{D}$ and define $\phi_h(x) := (\phi(x+h) 2\phi(x) + \phi(x-h))/h^2$. Show that, in the sense of \mathcal{D} , $\lim_{h\to 0} \phi_h = \phi''$.
- (b) Let $T \in \mathcal{D}'$ and define $T_h = (T(x+h) 2T(x) + T(x-h))/h^2$. Show that, in the sense of distributions, $\lim_{h\to 0} T_h = T''$.

Problem 3. Let both $K \in \mathcal{C}(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H})$ be self adjoint.

- (a) Show that $||L|| = \sup_{||u||=1} |\langle Lu, u \rangle|$. (Hint: look at $\langle L(u+v), u+v \rangle \langle L(u-v), u-v \rangle$.)
- (b) Prove this: Either ||K|| or -||K|| is an eigenvalue of K.

Problem 4. Let *L* be a (possibly unbounded) closed, densely defined linear operator with domain $D_L \subseteq \mathcal{H}$.

- (a) Define these: the resolvent set, $\rho(L)$; the discrete spectrum, $\sigma_d(L)$; the continuous spectrum, $\sigma_c(L)$; and the residual spectrum, $\sigma_r(L)$.
- (b) Show that L^* , the adjoint of L, is closed and densely defined.
- (c) Show that if L is self-adjoint, then $\sigma_r(L) = \emptyset$.

Applied/Numerical Analysis Qualifying Exam

August 11, 2015

Cover Sheet – Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name___

NUMERICAL ANALYSIS QUALIFIER

August 11, 2015

In the problems below \mathbb{P}^{j} denotes the space of polynomials on \mathbb{R}^{2} of degree at most j.

Problem 1. Let $T \subset \mathbb{R}^2$ be a triangle with vertices v_1, v_2 , and v_3 . Let $p_1 = (v_1 + v_2 + v_3)/3$, $p_2 = (2v_1 + v_2)/3$, $p_3 = (2v_1 + v_3)/3$, $p_4 = v_2$, $v_5 = (v_2 + v_3)/2$, and $p_6 = v_3$. Given $q \in \mathbb{P}^2$, let $\sigma_i(q) = q(p_i)$.

- 1. Show that the triple $(T, \mathbb{P}^2, \Sigma)$ constitutes a finite element, where $\Sigma = \{\sigma_i\}_{i=1}^6$. 2. Write down the nodal basis function ϕ_1 corresponding to this finite element. That is, $\phi_1 \in \mathbb{P}^2$ should satisfy $\phi_1(p_1) = 1$ and $\phi_1(p_j) = 0, j \neq 1$.

Hint: You should use barycentric (area) coordinates to derive your solution.

Problem 2. For $f \in L^2(0,1)$, consider the following weak formulation: Seek $(u,v) \in$ $\mathbb{V} := H_0^1(0,1) \times H_0^1(0,1)$ satisfying for all $(\phi,\psi) \in \mathbb{V}$

(2.1)
$$a((u,v);(\phi,\psi)) := \int_0^1 u'\phi' + \int_0^1 v'\psi' - \int_0^1 v\phi = \int_0^1 f\psi =: L(\psi).$$

- 1. What is the corresponding strong form satisfied by u (eliminate v)?
- 2. Show that for all $w \in H_0^1(0,1)$

$$\left(\int_{0}^{1} w^{2}\right)^{1/2} \le \left(\int_{0}^{1} |w'|^{2}\right)^{1/2}.$$

3. Using Part (2) show that $a(\cdot; \cdot)$ coerces the natural norm on \mathbb{V} :

$$|||\phi,\psi||| := \left(\|\phi\|_{H^1(0,1)}^2 + \|\psi\|_{H^1(0,1)}^2 \right)^{1/2}$$

and explicitly find the coercivity constant.

4. Let \mathbb{V}_h be a finite dimensional subspace of \mathbb{V} . Explain why there is a unique $(u_h, v_h) \in$ \mathbb{V}_h satisfying for all $(\phi_h, \psi_h) \in \mathbb{V}_h$

$$a((u_h, v_h); (\phi_h, \psi_h)) = L(\psi_h).$$

5. Show that

$$|||u - u_h, v - v_h||| \le C_1 \inf_{(\phi_h, \psi_h) \in \mathbb{V}_h} |||u - \phi_h, v - \phi_h|||$$

(find C_1 explicitly).

6. You may assume that $u, v \in H_0^1(0,1) \cap H^2(0,1)$. Propose a discrete space \mathbb{V}_h such that

$$|||u - u_h, v - v_h||| \le C_2 h(||u||_{H^2(0,1)} + ||v||_{H^2(0,1)})$$

for a constant C_2 independent of h. Justify your suggestion.

Problem 3. For $\Omega = (0, 1)^2$ and $u_0 \in L^2(\Omega)$, consider the parabolic problem:

(3.1)
$$u_t - \Delta u + (u_x + u_y) = 0, \qquad (x, t) \in \Omega \times (0, T],$$
$$u(x, t) = 0, \qquad x \in \partial\Omega, t \in (0, T],$$
$$u(x, 0) = u_0(x), \qquad x \in \Omega.$$

- 1. Using a finite element space $V_h \subset H_0^1(\Omega)$, derive a semi-discrete approximation to (3.1) having solution $u_h(t) \in V_h$. This approximation satisfies $u_h(0) = \pi_h u_0$ with π_h denoting the $L^2(\Omega)$ -projection onto V_h .
- 2. Show that

$$||u_h(t)||_{L^2(\Omega)} \le ||u_0||_{L^2(\Omega)}, \quad t \in [0, T].$$

Hint: Recall the integration-by-parts formula $\int_{\Omega} uv_{x_i} dx = \int_{\partial \Omega} uv\nu_i d\sigma - \int_{\Omega} u_{x_i} v dx$, $u, v \in H^1(\Omega)$, where ν_i is the *i*-th component of the outward unit normal on $\partial \Omega$.

3. Consider the initial value problem:

$$w' + \lambda w = 0, \qquad w(0) = w_0,$$

and the time stepping method with step size k:

$$\frac{w^{n+1} - w^n}{k} + \lambda(\theta w^{n+1} + (1 - \theta)w^n) = 0.$$

Here θ is a parameter in [0,1] and $\lambda \in \mathbb{R}$ with $\lambda > 0$. Use this method to develop a fully discrete (θ dependent) approximation to (3.1) (Note: $\theta = 1$ and $\theta = 0$ correspond to, respectively, backward and forward Euler time stepping).

4. Let $U^n \in V_h$ be the resulting fully discrete approximation after *n* steps using $U^0 = \pi_h u_0$. Show that for $\theta \in [1/2, 1]$,

$$||U^n||_{L^2(\Omega)} \le ||U^0||_{L^2(\Omega)}.$$

Hint: Test with a discrete function that depends on θ .