Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 11, 2016

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Give an example of a function in D.
- (c) Show that $\psi \in \mathcal{D}$ has the form $\psi(x) = \phi''(x)$ for some $\phi \in \mathcal{D}$ if and only if $\int_{-\infty}^{\infty} \psi(x) dx = \int_{-\infty}^{\infty} x \psi(x) dx = 0$.
- (d) Use 2(c) to solve, in the distributional sense, the differential equation u''=0.

Problem 2. Consider the operator Lu = -u'' defined on functions in $L^2[0,\infty)$ having u'' in $L^2[0,\infty)$ and satisfying the boundary condition that u'(0) = 0; that is, L has the domain

$$\mathfrak{D}_L = \{ u \in L^2[0, \infty) \mid u'' \in L^2[0, \infty) \text{ and } u'(0) = 0 \}.$$

- (a) Find the Green's function $G(x,\xi;z)$ for $-G''-zG=\delta(x-\xi)$, with $G_x(0,\xi;z)=0$.
- (b) Employ the spectral theorem (Stone's formula) to obtain the cosine transform formulas:

$$F(\mu) = \frac{2}{\pi} \int_0^\infty f(x) \cos(\mu x) dx \text{ and } f(x) = \int_0^\infty F(\mu) \cos(\mu x) d\mu.$$

Problem 3. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) Consider $K \in \mathcal{C}(\mathcal{H})$. Show that if $\{\phi_n\}_{n=0}^{\infty}$ is an orthonormal set in \mathcal{H} , then $\lim_{n\to\infty} K\phi_n = 0$.
- (b) Suppose that $K \in \mathcal{C}(\mathcal{H})$ is self adjoint.
 - (i) Show that $\sigma(K)$ (the spectrum) consists only of eigenvalues, together with 0, and that the only limit point of $\sigma(K)$ is 0.
 - (ii) Given that $||K|| = \sup_{||u||=1} |\langle Ku, u \rangle|$, show that either ||K|| or -||K|| (or possibly both) is an eigenvalue of K, and that the corresponding eigenspace is finite dimensional.

Problem 4. Suppose that f(x) is 2π -periodic function in $C^{(m)}(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π -periodic. Here m>0 is a fixed integer. Let c_k denote the k^{th} (complex) Fourier coefficient for f, and let $c_k^{(j)}$ denote the k^{th} (complex) Fourier coefficient for $f^{(j)}$.

- (a) Prove that $c_k^{(j)} = (ik)^j c_k$, j = 0, ..., m+1. (Note: using term by term differentiation of the Fourier series assumes what you want to prove.)
- (b) For $k \neq 0$, show that c_k satisfies the bound

$$|c_k| \le \frac{1}{2\pi |k|^{m+1}} ||f^{(m+1)}||_{L^1[0,2\pi]}.$$

(c) Let $f_n(x) = \sum_{k=-n}^n c_k e^{ik\theta}$ be the n^{th} partial sum of the Fourier series for $f, n \ge 1$. Show that

$$||f - f_n||_{L^2[0,2\pi]} \le C \frac{||f^{(m+1)}||_{L^1[0,2\pi]}}{n^{m+\frac{1}{2}}},$$

where C is independent of f and n.

APPLIED MATHEMATICS/NUMERICAL ANALYSIS QUALIFIER

Aug. 11, 2016

Numerical Analysis part, 2hours

Problem 1. Let $K \subset \mathbb{R}^2$ be a simplex. Let $k \in \mathbb{N}$ and consider the set of multi-indices $\mathcal{A}_{k,2} := \{\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2 \mid |\alpha| \leq k\}$. Let $\mathbb{P}_{k,2}$ be the set of the real-valued 2-variate polynomials of degree at most k.

- (1) Let $\Sigma_{k,2}$ be the collection of the following linear forms $\sigma_{\alpha}(p) = \int_{K} \partial^{\alpha_1} \partial^{\alpha_2} p \, dx$, for all $\alpha \in \mathcal{A}_{k,2}$ and all $p \in \mathbb{P}_{k,2}$, where $\partial^{\alpha_i} p(x_1, x_2)$ is the α_i -th partial derivative of p with respect to x_i . Show that $(K, \mathbb{P}_{k,2}, \Sigma_{k,2})$ is a finite element. (*Hint:* induction on k.)
- (2) Let $f \in W^{k,1}(K)$. Show that there exists a unique $q \in \mathbb{P}_{k,2}$ such that $\int_K \partial^{\alpha_1} \partial^{\alpha_2} (q-f) \, \mathrm{d}x = 0$ for all $\alpha \in \mathcal{A}_{k,2}$.
- (3) Compute the three shape functions of $(\widehat{K}, \mathbb{P}_{1,2}, \Sigma_{1,2})$ where $\widehat{K} := \{(x_1, x_2) \in \mathbb{R}^2 \mid 0 \le x_1, \ 0 \le x_2, \ x_1 + x_2 \le 1\}.$

Problem 2. Consider the equation $\mu \partial_t u + \beta \partial_x u - \nu \partial_{xx} u = f$ in D = (0,1), t > 0, where $\mu \in \mathbb{R}_+$, $\beta \in \mathbb{R}$, $\nu \in \mathbb{R}_+$ and $f \in L^2(D)$ with boundary conditions u(0) = 0, u(1) = 0 and initial data u(x,0) = 0. Let \mathcal{T}_h be the mesh composed of the cells [ih, (i+1)h], $i \in \{0:I\}$, with uniform mesh size $h = \frac{1}{I+1}$. Let $P(\mathcal{T}_h)$ be the finite element space composed of continuous piecewise linear functions that are zero at 0 and at 1. Let $(\varphi_i)_{0 \le i \le I}$ be the global Lagrange shape functions associated with the nodes $x_i := ih, i \in \{1:I\}$.

- (1) Write the fully discretize version of the problem in $P(\mathcal{T}_h)$ using the implicit Euler approximation for the time. Denote the time step by Δt and $t^l := l\Delta t$ for all $l \in \mathbb{N}$.
- (2) Prove one stability estimate. (*Hint:* You may want to introduce the Poincaré constant c_P such that $c_P ||v||_{L^2} \leq ||\partial_x v||_{L^2}$ for all $v \in H_0^1(D)$.)
- (3) Denoting by $u_h^l = \sum_{0 \le i \le l+1} U_i^l \varphi_i$ the approximation of u at time $t^l = l\Delta t$, write the linear system solved by $(U_1^{n+1}, \ldots, U_I^{n+1})^{\mathsf{T}}$.

Problem 3. Let D=(0,1) and $f(x)=\frac{1}{x(1-x)}$. Consider the problem: $-\partial_x((1+\sin(x)^2)\partial_x u)=f$ in D with u(0)=u(1)=0.

- (1) Prove that f is the weak derivative of $g(x) = \log(x) \log(1-x)$. Is g in $L^2(D)$?
- (2) Write a weak formulation of the above problem with both trial and test spaces equal to $H_0^1(D)$.
- (3) Show that the problem is well posed in $H_0^1(D)$.
- (4) Let \mathcal{T}_h be the mesh composed of the cells [ih, (i+1)h], $i \in \{0:I\}$, with uniform mesh size $h = \frac{1}{I+1}$. Let $P(\mathcal{T}_h)$ be the finite element

space composed of continuous piecewise linear functions that are zero at 0 and 1. Write the discrete problem in $P(\mathcal{T}_h)$.

(5) Derive an error estimate in $H^1(D)$. (Note that we only have $u \in H^{r_{\max}}(D)$ for some $r_{\max} \in (1,2)$ since f is not in $L^2(D)$.)

(6) Derive an improved error estimate in $L^2(D)$. (Hint: Use a duality argument. Consider the problem $-\partial_x((1+\sin(x)^2)\partial_x s) = v$ in D with s(0) = s(1) = 0 and $v \in L^2(D)$. Accept as a fact that s is in $H^2(D)$ if $v \in L^2(D)$, and there is c > 0 such that $|s|_{H^2} \le c||v||_{L^2}$ for all $v \in L^2(D)$.)

(7) Bonus question if you have time. Prove the elliptic regularity

statement in the above hint.