APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER Applied Analysis Part, 2 hours August 8, 2018

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let H be the Sobolev space $H = H_0^1[0,1] := \{f \in L^2[0,1] : f' \in L^2[0,1] \text{ and } f(0) = f(1) = 0\}$, where $\langle f,g \rangle_H := \int_0^1 f'(x)g'(x)dx$. You may assume that H is a Hilbert space and that if $f \in H$, then $f \in C[0,1]$.

(a) State and prove the Riesz Representation Theorem.

(b) Show that if $f \in H$, then $||f||_{C[0,1]} \le ||f||_{H}$.

- (c) Let $f \in C[0,1]$ and let the "delta" functional $\delta_x(f) = f(x)$. Use parts (a) and (b) to show that there exists $G(x,\cdot) \in H$ such that $f(x) = \langle f, G(x,\cdot) \rangle_H$ for all $f \in H$. Verify that G(x,y) = G(y,x). (Hint: Let $f(\cdot) = G(y,\cdot)$.)
- (d) Let $X := \{x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}$. Define the $n \times n$ matrix A by $A_{j,k} := G(x_j, x_k)$. If A is invertible, show that there exists a unique $s(x) = \sum_{k=1}^n c_k G(x, x_k) \in H$ such that s interpolates f on X i.e., $s(x_j) = f(x_j)$, $j = 1, \ldots, n$.

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Let $\phi \in \mathcal{D}$ and define $\phi_h(x) := (\phi(x) \phi(x-h))/h$. Show that, in the sense of \mathcal{D} , $\lim_{h\to 0} \phi_h = \phi'$. (Hint: apply Taylor's formula to $\phi_h^{(n)} \phi^{(n+1)}$.)
- (c) Let $T \in \mathcal{D}'$ and define $T_h = (T(x+h) T(x))/h$. Show that, in the sense of distributions, $\lim_{h\to 0} T_h = T'$.
- (d) Use (c) to show that if $T(x) = \begin{cases} 1 & x \leq 0 \\ 0 & x > 0, \end{cases}$ then $T'(x) = -\delta(x)$.

Problem 3. Let $k(x,y) = x^4y^{12}$ and consider the operator $Ku(x) = \int_0^1 k(x,y)u(y)dy$.

- (a) Show that K is a Hilbert-Schmidt operator and that $||K||_{op} \leq 1/15$.
- (b) State the Fredholm Alternative for the operator $L = I \lambda K$. Explain why it applies in this case. Find all values of λ such that Lu = f has a unique solution for all $f \in L^2[0, 1]$.
- (c) Use a Neumann series to find the resolvent $(I \lambda K)^{-1}$ for λ small. Sum the series to find the resolvent.

Problem 4. Consider the one dimensional heat equation, $u_t = u_{xx}$, with u(x,0) = f(x), where $-\infty < x < \infty$ and $0 < t < \infty$. Use Fourier transforms to show that the solution u(x,t) is given by

$$u(x,t) = \int_{\mathbb{R}} K(x-y,t)f(y)dy, \ K(x-y,t) = (4\pi t)^{-1/2}e^{-(x-y)^2/4t}.$$

You may use any consistent Fourier transform convention¹ and any of the standard Fourier transform properties. You are also given that $\int_{-\infty}^{\infty} e^{-u^2 \pm ivu} du = \sqrt{\pi} e^{-v^2/4}$.

¹For example, $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx \& f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{f}(\xi)e^{ix\xi}dx$, or $\hat{f}(\xi) = \frac{1}{2\pi}\int_{-\infty}^{\infty} f(x)e^{ix\xi}dx \& f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{-ix\xi}dx$.

APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER Numerical Analysis Part, 2 hours August 8, 2018

Problem 1. Let $\Omega := (0,1)^2$ and $u \in H^1_\#(\Omega) := \{u \in H^1(\Omega) : \int_{\Omega} u = 0\}$ be such that

$$a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv =: L(v), \qquad \forall v \in H^1_\#(\Omega),$$

where $f \in L^2(\Omega)$ is a given function satisfying $\int_{\Omega} f = 0$. Accept as a fact that there exists a unique weak solution $u \in H^1_{\#}(\Omega)$.

The goal of this exercise is to analyze a non-conforming finite element method relaxing the vanishing mean value condition.

(1) Consider the approximate problem: Given $0 < \epsilon \le 1$, seek $u^{\epsilon} \in H^1(\Omega)$ such that

$$a_{\epsilon}(u^{\epsilon},v):=\int_{\Omega}
abla u^{\epsilon} \cdot
abla v + \epsilon \int_{\Omega} u^{\epsilon}v = L(v), \qquad \forall v \in H^{1}(\Omega).$$

- (i) Show that the above problem has a unique solution; (ii) show that $\int_{\Omega} u^{\epsilon} = 0$, i.e. $u^{\epsilon} \in H^1_{\#}(\Omega)$;
- (iii) Show that there exists a constant C independent of ϵ such that

$$\|\nabla(u - u^{\epsilon})\| \le C\epsilon \|f\|_{L^2(\Omega)}.$$

Hint: You can use (without proof) the following inequality: There exist a constant c such that for all $v \in H^1_\#(\Omega)$ there holds

$$||v||_{L^2(\Omega)} \le c||\nabla v||_{L^2(\Omega)}.$$

(2) Let V_h be the finite element space

$$V_h := \{ v_h \in C^0(\overline{\Omega}) : v|_T \in \mathbb{P}^1, \quad \forall T \in \mathcal{T}_h \},$$

where \mathcal{T}_h is a subdivision of Ω made of triangles of diameters h > 0.

Consider the discrete problem of finding $u_h^{\epsilon} \in V_h$ such that

$$a_{\epsilon}(u_h^{\epsilon}, v_h) = L(v_h), \quad \forall v_h \in V_h$$

(i) Show that u_h^{ϵ} exists and is unique in V_h ; (ii) Prove the following error estimate

$$\|\nabla(u^{\epsilon} - u_h^{\epsilon})\|_{L^2(\Omega)}^2 + \epsilon \|u^{\epsilon} - u_h^{\epsilon}\|_{L^2(\Omega)}^2 \le c \ (h^2 + \epsilon h^4) \|u^{\epsilon}\|_{H^2(\Omega)}^2,$$

where c is a constant independent of h and ϵ .

Hint: you can use standard interpolation results without proof.

(3) Assume that $|u^{\epsilon}|_{H^{2}(\Omega)} \leq C||f||_{L^{2}(\Omega)}$ for a constant C independent of ϵ and derive an error estimate for $||\nabla(u-u_{\epsilon}^{\epsilon})||_{L^{2}(\Omega)}$. What is the optimal choice for ϵ ?

Problem 2. Let T be the unit triangle in \mathbb{R}^2 , with vertices $v_1 = (0,0)$, $v_2 = (1,0)$, and $v_3 = (0,1)$ and edges $e_1 = v_1v_2$, $e_2 = v_2v_3$ and $e_3 = v_3v_1$. Let $RT_0 = \{(a + cx, b + cy) : a, b, c \in \mathbb{R}\}$ (so that members of RT_0 are vector functions over T, and $[\mathbb{P}_0]^2 \subseteq RT_0 \subseteq [\mathbb{P}_1]^2$). Finally, let $\sigma_i(\vec{u}) = \int_{e_i} \vec{u} \cdot \vec{n}_i$, where \vec{n}_i is the outward pointing unit normal vector to T on e_i , and let $\Sigma = \{\sigma_1, \sigma_2, \sigma_3\}$.

- (a) Show that (T, RT_0, Σ) is unisolvent.
- (b) Find a basis $\{\vec{\varphi}_1, \vec{\varphi}_2, \vec{\varphi}_3\}$ for RT_0 that is dual to Σ , i.e. $\sigma_i(\vec{\varphi}_j) = \delta_{ij}$ with $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise.
- (c) Let $(\Pi \vec{u})(x) = \sum_{i=1}^3 \sigma_i(\vec{u}) \vec{\varphi}_i(x)$, $x \in T$ and $\vec{u} \in [H^1(T)]^2$. Show that

$$\|\vec{u} - \Pi\vec{u}\|_{[L_2(T)]^2} \le C|u|_{[H^1(T)]^2}, \ u \in [H^1(T)]^2.$$

Note: You may use standard analysis results such as trace and Poincaré inequalities without proof, but specify carefully which inequalities you are using.

Problem 3. Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, T > 0 be a given final time and **b** be a given smooth vector valued function satisfying

$$\operatorname{div}(\mathbf{b}(x,t)) = 0 \quad (x,t) \in \Omega \times [0,T] \quad \text{and} \quad \mathbf{b}(x,t) = 0 \quad (x,t) \in \partial\Omega \times [0,T].$$

Consider the time-dependent problem

$$\frac{\partial u}{\partial t}(x,t) + \mathbf{b}(x,t) \cdot \nabla u(x,t) = 0, \qquad (x,t) \in \Omega \times (0,T)$$

together with the initial condition $u(x,0) = u_0, x \in \Omega$.

Let \mathcal{T}_h be a subdivision of Ω made of triangles and

$$V_h := \{ v_h \in C^0(\overline{\Omega}) : v_h|_K \in \mathbb{P}_1 \ \forall K \in \mathcal{T} \}.$$

Choose an integer $N \geq 2$, set k := T/N and $t_n := nk$. Let $u_h^0 \in V_h$ be a given approximation of u_0 . For $1 \leq n \leq N$ define $u_h^n \in V_h$ recursively by the relations

$$\frac{1}{k}\int_{\Omega}(u_h^n(x)-u_h^{n-1}(x))v_h(x)\ dx+\int_{\Omega}\left(\mathbf{b}(x,t_n)\cdot\nabla u_h^n(x)\right)v_h(x)\ dx=0,\qquad\forall v_h\in V_h.$$

- Prove that given $u_h^n \in V_h$, the above finite dimensional system has a unique solution $u_h^{n+1} \in V_h$.
- Prove that for $1 \le n \le N$

$$||u_h^n||_{L^2(\Omega)} \le ||u_h^0||_{L^2(\Omega)}.$$

• Is the matrix representing the finite dimensional system symmetric? Justify your answer.