
APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

August 6, 2019

Applied Analysis Part, 2 hours

Name:

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible.

Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated

incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the

problem so that it becomes trivial.

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping.
No extra credit for doing all four.

Problem 1. Let f 2 C[0, 1], � > 0, and !(f, �) be the modulus of continuity for f .

(a) Let � = {x0 = 0 < x1 < · · · < xn = 1} be a knot sequence with norm k�k = max |xj � xj+1|,

j = 0, . . . , n�1. If sf is the linear spline that interpolates f at the xj ’s, show that kf �sfk1 

!(f, k�k).

(b) Using part (a) and the fact that the continuous functions are dense in L1
[0, 1], prove the

Riemann-Lebesgue Lemma: lim|�|!1
R 1
0 g(x)ei�xdx = 0, for all g 2 L1

[0, 1].

Problem 2. Let D be the set of compactly supported C1
functions defined on R and let D

0
be the

corresponding set of distributions.

(a) Define convergence in D and D
0
.

(b) Consider a function f 2 C(1)
(R) such that both f and f 0

are in L1
(R), and

R
R f(x)dx = 1.

Define the sequence of functions {Tn(x) := n2f 0
(nx) : n = 1, 2, . . .}. Show that, in the sense of

distributions — i.e., in D
0
—, Tn converges to �0.

Problem 3. Let L be a closed, densely defined (possibly unbounded) linear operator on a Hilbert

space H, and let the range of L be dense in H.

(a) Show that if there exists C > 0 such that kLfk � Ckfk for all f 2 D, then L�1
is bounded.

(b) Use (a) to show that if L = L⇤
, then the spectrum of L is contained in R.

Problem 4. Consider the boundary problem below::

L[u] =
d

dx

✓
x
du

dx

◆
= f, where D = {u 2 L2

[1, e] : Lu 2 L2
[1, e], u0(1) = 0, u(e) = 0},

(a) Find the Green’s function g(x, y) for the problem, given that 1, log(x) solve L[u] = 0.

(b) Show that Kf(x) =
R e
1 g(x, y)f(y)dy is self adjoint, and briefly explain why it’s compact.

Show directly from the spectral theory for compact operators that the orthonormal set of

eigenfunctions for L is complete in L2
[1, e]. (Do not solve the eigenvalue problem.)
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Applied Analysis/Numerical Analysis Qualifying Exam

August 6, 2019

Numerical Analysis Part, 2 hours

Name

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as

possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has

been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not

interpret the problem so that it becomes trivial.

Problem 1. Consider the boundary value problem: Find u such that

(1) ��u = f in ⌦, ru · n+ u = 0 on �,

where ⌦ ⇢ R2
is a polygonal domain, � = @⌦ is the boundary of ⌦, n is the outward-pointing unit

normal on �, and q 2 R and f 2 L2(⌦) are given.

(a) The problem (1) has weak form given by: Find u 2 V such that

(2) a(u, v) = L(v), 8v 2 V.
Identify the bilinear form a, the linear form L, and the function space V.
(b) Show that the problem (2) has a unique solution.

Hint: If you have correctly identified V, then there holds

kukL2(⌦)  C(krukL2(⌦) + kukL2(�)), u 2 V.
You may use this inequality without proof.

(c) Let Th be a shape-regular partition of ⌦ into triangles. Introduce the finite dimensional space Vh

consisting of continuous piecewise linear polynomials over Th. Consider the finite element approxi-

mation of (2): find

(3) uh 2 Vh, s.t. a(uh, v) = L(v) for all v 2 Vh.

State and prove the optimal estimate for the error ku�uhkV assuming that the solution to (2) belongs

to the Sobolev space H
2
(⌦). As part of your proof you should define an appropriate interpolation

operator and state, but not prove, optimal error estimates for this operator.

(d) Derive an optimal error bound for ku � uhkL2(⌦) under the assumption of full regularity of the

problem (2).

Problem 2. Consider the interval I(0, 1) and the set of continuous functions v̂ defined on [0, 1].

Let â1 = 0, â2 = 1/4, and â3 = 1. Consider also the following set of degrees of freedom:

⌃ = {v̂(â1), v̂(â3), v̂
0
(â2)}.

(a) Show that triple (I,P2,⌃) is a finite element.

(b) Write down the basis for the quadratic polynomials P2 that is dual to ⌃, that is, find qi 2 P2

(i = 1, 2, 3) such that q̂i(âj) = �ij (i = 1, 2, 3 and j = 1, 3) and q̂
0
i(â2) = �i2 (i = 1, 2, 3). Then write

down the finite element interpolant ⇧̂(ŵ) of a given function ŵ 2 C
0
[0, 1] with respect to the given

degrees of freedom.

(c) Consider the interval [a, b], let F map [0, 1] onto [a, b], and let v 2 H
3
(a, b). Define ⇧(v) by

(⇧(v)) � F = ⇧̂(v � F ). Use the Bramble-Hilbert Lemma and the reference map F in order to

estimate the error

kv0 �⇧(v)
0kL2(a,b)
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in terms of h = b � a. Explain how to modify the proof when v is less regular, in particular when

v 2 H
2
(a, b).

Problem 3. Let ⌦ be a bounded domain and T > 0 be a given final time. For f 2 C
0
([0, T ];L2(⌦))

and u0 2 H
1
0 (⌦) given, we consider the parabolic problem consisting in finding u : ⌦ ⇥ [0, T ] ! R

such that 8
<

:

@
@tu(x, t)��u(x, t) = f(x, t) for (x, t) 2 ⌦⇥ (0, T ],

u(x, t) = 0 for (x, t) 2 @⌦⇥ [0, T ],

u(x, 0) = u0(x) for x 2 ⌦.

We assume that the solution u to the above problem is su�ciently smooth.

Let N be a strictly positive integer and let ⌧ := T/N , tn := n⌧ and t
n+ 1

2 :=
1
2(t

n+1
+ t

n
)

for n = 0, ..., N . We consider the following semi-discretization in time: Set U
0
:= u0 and define

U
n
: ⌦ ! R recursively by

⇢
1
⌧ (U

n+1
(x)� U

n
(x))� 1

2�(U
n+1

(x) + U
n
(x)) = f(x, t

n+ 1
2 ) for x 2 ⌦,

U
n+1

(x) = 0 for x 2 @⌦.

(1) (Stability) Show that for n = 0, ..., N , U
n
satisfies

kUn+1k2L2(⌦)  kU0k2L2(⌦) +
1

2
C

2
p⌧

nX

j=0

kf(tj+
1
2 )k2L2(⌦).

(2) (Consistency I) Show either (but not both) that

k1
⌧
(u(t

n+1
)� u(t

n
))� @

@t
u(t

n+ 1
2 )kL2(⌦)  C⌧

3
2 k @

3

@t3
ukL2(tn,tn+1;L2(⌦))

or

k1
2
�

�
u(t

n+1
) + u(t

n
)
�
��u(t

n+ 1
2 )kL2(⌦)  C⌧

3
2 k @

2

@t2
�ukL2(tn,tn+1;L2(⌦)).

Here C is a constant independent of ⌧ , T and u.

Hint: You can use without proof the following Taylor expansion formula

g(b) = g(a) + g
0
(a)(b� a) + ...+

1

n!
g
(n)

(a)(b� a)
n
+

1

n!

Z b

a
(b� t)

n
g
(n+1)

(t)dt.

(3) (Consistency II) Deduce from the previous item that for a constant C independent of ⌧ , T

and u we have

k1
⌧
(u

n+1
(x)� u

n
(x))� 1

2
�(u

n+1
(x) + u

n
(x))� f(t

n+ 1
2 )kL2(⌦)

 C⌧
3
2

✓
k @

3

@t3
ukL2(tn,tn+1;L2(⌦)) + k @

2

@t2
�ukL2(tn,tn+1;L2(⌦))

◆
.

(4) From (2) and (4), conclude the following estimate for the error e
n
:= u(t

n
)� U

n
:

keNk2L2(⌦)  C⌧
4

✓
k @

3

@t3
uk2L2(0,T ;L2(⌦)) + k @

2

@t2
�uk2L2(0,T ;L2(⌦))

◆
,

where C is a constant independent of ⌧ , T and u.


