Applied/Numerical Analysis Qualifying Exam

August 13, 2021

Cover	Sheet	_	Applied	Analysis	Part
-------	-------	---	---------	-----------------	------

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name	
1102110	

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 13, 2021

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Give an example of a function in \mathcal{D} .
- (c) Show that $\psi \in \mathcal{D}$ has the form $\psi(x) = x^2 \phi(x)$ for some $\phi \in \mathcal{D}$ if and only if $\psi(0) = 0$ and $\psi'(0) = 0$.
- (d) Use 2(c) to find all $T \in \mathcal{D}'$ that satisfy $x^2T(x) = 0$.

Problem 2. Let \mathcal{P} be the set of all polynomials.

- (a) State and sketch a proof of the Weierstrass approximation theorem.
- (b) let $\mathcal{H}=L^2_w[0,1]$, where the inner product is $\langle f,g\rangle=\int_0^1 f(x)\overline{g(x)}w(x)dx$ and where $w\in C[0,1],\ w(x)\geq c>0$ on [0,1]. Show that \mathcal{P} is dense in $L^2_w[0,1]$. (You may use the density of C[0,1] in $L^2[0,1]$.)
- (c) Let $\mathcal{U} := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that \mathcal{U} is a complete set in $L_w^2[0,1]$.

Problem 3. Suppose that K is a compact operator and $Tu(x) := \int_{-\infty}^{\infty} e^{-|x-y|^2} u(y) dy$.

- (a) Show that if $\{\phi_j\}_{j=1}^{\infty}$ is an orthonormal set, then $\lim_{j\to\infty} K\phi_j = 0$.
- (b) Show that T is a bounded operator on $L^2(\mathbb{R})$.
- (c) The set $\phi_j = \chi_{[j,j+1]}$ is an orthonormal basis for $L^2(\mathbb{R})$. Use translation invariance to show that $||T\phi_j|| = ||T\phi_0||$.
- (d) Show that T is not compact.

Problem 4. Let $Lu = x^2u'' + 2xu' - 2u$. $D_L = \{u \in L^2[1, 2]], \ u'(1) = 0, u(2) = 0\}$. You are given that x, x^{-2} are homogenous solutions.

- (a) Show that $L = L^*$.
- (b) Find the Green's function G. Show that $Ku(x) = \int_1^2 G(x,y)u(y)dy$ is compact and selfadjoint.
- (c) State the spectral theorem for compact, self-adjoint operators. Use it to show that the (normalized) eigenfunctions of the eigenvalue problem $Lu + \lambda u = 0$, $u \in D_L$, form a complete orthonormal set in $L^2[1,2]$.

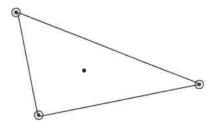
NUMERICAL ANALYSIS QUALIFIER

August, 2021

Problem 1. Consider the C^0 Hermite cubic finite element $(T, \mathbb{P}^3, \Sigma)$, where

 $T \subset \mathbb{R}^2$ is a triangle with vertices v_1, v_2, v_3 and barycenter b, \mathbb{P}^3 is the set of polynomials of degree 3 or less on T, $\Sigma = \{p(v_i), p(b), \nabla p(v_i), i = 1, 2, 3\}.$

The diagram for the degrees of freedom is below (dots are function evaluations, circles are gradient evaluations). Show that $(T, \mathbb{P}^3, \Sigma)$ is a finite element.



Hints:

- (1) You may assume without loss of generality that T is the unit triangle if you wish.
- (2) Each gradient evaluation $\nabla p(v_i)$ yields two degrees of freedom which may be taken to be any two directional derivatives in independent directions.
- (3) You may use the following elementary factorization result without proof:

If $p \in \mathbb{P}^k$ and p = 0 on the line L(x, y) = 0, then $p = Lp_{k-1}$ with $p_{k-1} \in \mathbb{P}^{k-1}$.

Problem 2. Consider the boundary value problem

(2.1)
$$-u''(x) - \alpha u(x) = f(x), \quad 0 < x < 1,$$

$$u(0) = 0, \quad u'(1) = 0,$$

where f(x) is a given function on (0,1) and $\alpha > 0$ is a given constant. Note: Below you may assume:

- (1) The validity of an appropriate Poincaré inequality.
- (2) Approximation (interpolation) error bounds for the finite element spaces you define below.

However, be sure to correctly and clearly state these results with appropriate hypotheses before using them.

- (a) Give a weak formulation of this problem. As part of deriving the weak formulation, be sure to define an appropriate variational space V.
- (b) Prove that the corresponding bilinear form is coercive on V. This result is only valid for a restricted range of values of the parameter α . Clearly state for which α your result holds, and explicitly include dependence on α and the Poincaré constant in your coercivity constant.
- (c) Set up a finite dimensional space $V_h \subset V$ of piece-wise polynomial functions of degree k over a uniform partition of (0,1). Introduce the Galerkin finite element method for the problem (2.1) for V_h . State (but do not prove) an error estimate in the V-norm assuming that $u \in H^{k+1}(0,1)$.

1

(d) Assuming "full regularity" and using a duality argument prove the following estimate for the error of the Galerkin solution u_h :

$$||u - u_h||_{L^2} \le Ch^{k+1} ||u^{(k+1)}||_{L^2}.$$

Problem 3. Let Ω be a bounded domain and T > 0 be a given final time. For $f \in C^0([0,T]; L_2(\Omega))$ and $u_0 \in H^1_0(\Omega)$ given, we consider the parabolic problem consisting in finding $u: \Omega \times [0,T] \to \mathbb{R}$ such that

$$\left\{ \begin{array}{ll} \frac{\partial}{\partial t} u(x,t) - \Delta u(x,t) = f(x,t) & \text{ for } (x,t) \in \Omega \times (0,T], \\ u(x,t) = 0 & \text{ for } (x,t) \in \partial \Omega \times [0,T], \\ u(x,0) = u_0(x) & \text{ for } x \in \Omega. \end{array} \right.$$

We assume that the solution u to the above problem is sufficiently smooth.

Let N be a strictly positive integer and let $\tau := T/N$, $t_n := n\tau$ and $t^{n+\frac{1}{2}} := \frac{1}{2}(t^{n+1} + t^n)$ for n = 0, ..., N. We consider the following semi-discretization in time: Set $U^0 := u_0$ and define $U^n \in H^1_0(\Omega)$ recursively by

$$\begin{cases} \frac{1}{\tau}(U^{n+1}(x) - U^n(x)) - \frac{1}{2}\Delta(U^{n+1}(x) + U^n(x)) = f(x, t^{n+\frac{1}{2}}) & \text{for } x \in \Omega, \\ U^{n+1}(x) = 0 & \text{for } x \in \partial\Omega. \end{cases}$$

(a) (Stability) Show that for $n = 0, ..., N, U^n$ satisfies

(3.1)
$$||U^{n+1}||_{L_2(\Omega)} \le ||U^0||_{L_2(\Omega)} + \tau \sum_{i=0}^n ||f(t^{j+\frac{1}{2}})||_{L_2(\Omega)}.$$

<u>Hint:</u> Write the time-discretized problem in weak form before multiplying by a suitable test function.

(b) (Consistency I) Show either (but not both) that

$$\|\frac{1}{\tau}(u(t^{n+1})-u(t^n))-\frac{\partial}{\partial t}u(t^{n+\frac{1}{2}})\|_{L_2(\Omega)}\leq C\tau\|\frac{\partial^3}{\partial t^3}u\|_{L_1(t^n,t^{n+1};L_2(\Omega))}$$

or

$$\|\frac{1}{2}\Delta\left(u(t^{n+1}) + u(t^n)\right) - \Delta u(t^{n+\frac{1}{2}})\|_{L_2(\Omega)} \le C\tau \|\frac{\partial^2}{\partial t^2}\Delta u\|_{L_1(t^n,t^{n+1};L_2(\Omega))}.$$

Here C is a constant independent of τ , T and u.

Hint: You can use without proof the following Taylor expansion formula

$$g(b) = g(a) + g'(a)(b-a) + \dots + \frac{1}{n!}g^{(n)}(a)(b-a)^n + \frac{1}{n!}\int_a^b (b-t)^n g^{(n+1)}(t)dt.$$

(c) (Consistency II) Deduce from the previous item that for a constant C independent of τ , T and u we have

(3.2)
$$\|\frac{1}{\tau}(u^{n+1}(x) - u^{n}(x)) - \frac{1}{2}\Delta(u^{n+1}(x) + u^{n}(x)) - f(t^{n+\frac{1}{2}})\|_{L_{2}(\Omega)}$$

$$\leq C\tau \left(\|\frac{\partial^{3}}{\partial t^{3}}u\|_{L_{1}(t^{n},t^{n+1};L_{2}(\Omega))} + \|\frac{\partial^{2}}{\partial t^{2}}\Delta u\|_{L_{1}(t^{n},t^{n+1};L_{2}(\Omega))} \right).$$

(d) From (3.1) and (3.2), conclude the following estimate for the error $e^n := u(t^n) - U^n$:

$$\|e^N\|_{L_2(\Omega)} \leq C\tau^2 \left(\|\frac{\partial^3}{\partial t^3}u\|_{L_1(0,T;L_2(\Omega))} + \|\frac{\partial^2}{\partial t^2}\Delta u\|_{L_1(0,T;L_2(\Omega))} \right),$$

where C is a constant independent of τ , T and u.