
Applied/Numerical Analysis Qualifying Exam

January 11, 2010

Policy on misprints: The qualifying exam committee tries to proofread
exams as carefully as possible. Nevertheless, the exam may contain a few
misprints. If you are convinced a problem has been stated incorrectly, in-
dicate your interpretation in writing your answer. In such cases, do not
interpret the problem so that it becomes trivial.

Part 1: Applied Analysis

Instructions: Do any 3 of the 4 problems in this part of the exam. Show
all of your work clearly. Please indicate which of the 4 problems you are
skipping.

1. Let Lu = d
dx

(
(1+x)du

dx

)
. Find the Green’s function for Lu = f , u(0) = 0

and u′(1) = 0.

2. This problem concerns Mallat’s multiresolution analysis (MRA).

(a) Define the term multiresolution analysis. For the Haar MRA, state
the scaling function φ, the wavelet ψ, the approximation spaces
Vj, the dilation (or scaling) relation, and the wavelet spaces Wj.

(b) Use the scaling and wavelet coefficients given below to derive the
decomposition and reconstruction formulas for the Haar MRA.

sj
k = 2j

∫
R
f(x)φ(2jx− k)dx and dj

k = 2j

∫
R
f(x)ψ(2jx− k)dx.

(c) Let f be compactly supported and continuous on R. Show that sj
k

is the average of f(x) over the interval [k ·2−j, (k+ 1) ·2−j], where
sj

k is given in part 2b. What role does this formula play in the
initialization step of a wavelet analysis? (One or two sentences
will suffice.)
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3. A chain having uniform linear density ρ = 1 hangs between the points
(-1,0) and (1,0). (The positive y direction is downward; the acceleration
due to gravity is g = 1.) The total mass m, which is fixed, and the
total energy E of the chain are

m =

∫ 1

−1

√
1 + y′2dx > 2 and E[y] =

∫ 1

−1

y
√

1 + y′2dx

Assuming that the chain hangs in a shape that minimizes the energy,
find the shape of the hanging chain. (Hint: the integrand of the func-
tional to be minimized doesn’t depend on x.)

4. Let H be a complex (separable) Hilbert space, with 〈·, ·〉 and ‖ ·‖ being
the inner product and norm.

(a) Let λ ∈ C be fixed. If K : H → H is a compact linear operator,
show that the range of the operator L = I − λK is closed.

(b) Briefly explain why the operator Ku(x) :=
∫ 1

0
(3 + 4xy2)u(y)dy

is compact on H = L2[0, 1]. Determine the values of λ ∈ C for
which u = f + λKu has a solution for all f ∈ L2[0, 1]. State the
theorem that you are using to answer the question.
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Part 2: Numerical Analysis

Instructions: Do all problems in this part of the exam. Show all of your
work clearly.

1. Consider the system

−∆u− φ = f
u −∆φ= g

(1)

in the bounded, smooth domain Ω, with boundary conditions u = φ = 0
on ∂Ω.

(a) Derive a weak formulation of the system (1), using suitable test
functions for each equation. Define a bilinear form a

(
(u, φ), (v, ψ)

)
such that this weak formulation amounts to

a
(
(u, φ), (v, ψ)

)
= (f, v) + (g, ψ). (2)

(b) Choose appropriate function spaces for u and φ in (2).

(c) Show, that the weak formulation (2) has a unique solution. Hint:
Lax-Milgram.

(d) For a domain Ωd = (−d, d)2, show that

‖u‖2 ≤ cd2‖∇u‖2 (3)

holds for any function u ∈ H1
0 (Ωd).

(e) Now change the second “-” in the first equation of (1) to a “+”.
Use (3) to show stability for the modified equation on Ωd, provided
that d is sufficiently small.

2. Consider the two finite elements (τ,Q1,Σ) and (τ, Q̃1,Σ), where τ =
[−1, 1]2 is the reference square and

Q1 = span
{

1, x, y, xy
}
,

Q̃1 = span
{

1, x, y, x2 − y2
}
.

Σ = {w(−1, 0), w(1, 0), w(0,−1), w(0, 1)} is the set of the values of a
function w(x, y) at the midpoints of the edges of τ .

3



(a) Which of the two elements is unisolvent? Prove it!

(b) Show that the unisolvent element leads to a finite element space,
which is not H1-conforming.

3. Consider the following initial boundary value problem: find u(x, t) such
that

ut − uxx + u = 0, 0 < x < 1, t > 0

ux(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = g(x), 0 < x < 1.

(a) Derive the semi-discrete approximation of this problem using lin-
ear finite elements over a uniform partition of (0, 1). Write it as a
system of linear ordinary differential equations for the coefficient
vector.

(b) Further, derive discretizations in time using backward Euler and
Crank-Nicolson methods, respectively.

(c) Show that both fully discrete schemes are unconditionally stable
with respect to the initial data in the spatial L2(0, 1)-norm.
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