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Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your
work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. State and prove the Shannon sampling theorem.

Problem 2. Let D be the set of compactly supported functions defined on R and let D′

be the corresponding set of distributions.

(a) Define convergence in D and D′.
(b) Give an example of a function in D.
(c) Show that ψ ∈ D has the form ψ(x) = (xφ(x))′ for some φ ∈ D if and only if∫∞

−∞ ψ(x)dx =
∫∞

0
ψ(x)dx = 0.

(d) Use 2(c) to show that if T ∈ D′ satisfies xT ′(x) = 0, then T (x) = c11 + c2H(x),
where H is the Heaviside step function.

Problem 3. Let H be a (separable) Hilbert space and let B(H) be the Banach space of
bounded operators on H. In addition, let C(H) be the subspace of B(H) comprising the
compact operators on H.

(a) Show that C(H) is closed in B(H).
(b) Define the term Hilbert-Schmidt operator. Show that if K is Hilbert-Schmidt, then

it is compact. (You may assume that K ∈ B(H).)
(c) Find the Green’s function G(x, y) for boundary value problem

(3.1) u′′ = f, u(0) = 0, u(1) = 0,

and show that Gf(x) =
∫ 1

0
G(x, y)f(y)dy is compact.

Problem 4. Let P be the set of all polynomials in x.

(a) State and sketch a proof of the Weierstrass approximation theorem.
(b) Show that P is dense in L2[0, 1].
(c) Let U := {pn}∞n=0 be the orthonormal set of polynomials obtained from P via the

Gram-Schmidt process. Show that U is a complete set in L2[0, 1].
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Problem 1. Let f be a given function in L2(0, 2) and u ∈ H1(0, 2) be the solution of

(1.1) a(u, v) :=

∫ 2

0

(u′v′ + xuv)dx =

∫ 2

0

fvdx =: L(v), for all v ∈ H1(0, 2).

(a) Derive the strong form of problem (1.1) assuming that the solution u is smooth.
(b) Show that the bilinear form a(·, ·) is coercive in H1(0, 2). You first prove that for

v ∈ H1(0, 2)

(1.2) ‖v‖2
L2(0,2) ≤ C

(∫ 2

1

v2(x)dx+ ‖v′‖2
L2(0,2)

)
with some positive constant C and then show that the left hand side of this inequality
is bounded by a(v, v).

(c) Let Th, 0 < h < 1, be quasi-uniform partition of (0, 2). The elements of this parti-
tioning will be denoted by τ . Set

Vh := {vh ∈ H1(0, 2) : vh|τ ∈ P1, τ ∈ Th}

where P1 denotes the space of linear polynomials on R2 and consider the following
Galerkin FEM: find uh ∈ Vh such that

(1.3) ah(uh, vh) :=

∫ 2

0

u′hv
′
h +Qh(xuhvh) = L(vh), ∀vh ∈ Vh.

where for computing the integral
∫ 2

0
xuhvhdx we have used the quadrature

Qh(w) :=
∑
τ∈Th

|τ |
2

(w(P1) + w(P2)),

with P1 and P2 being the end points of the subinterval τ .
Using similar argument as in the proof of the inequality (1.2), show that ah(·, ·) is
coercive in H1(0, 2), i.e. there is a constant α0 > 0, independent of h, such that

ah(vh, vh) ≥ α0‖vh‖2
H1(0,2) ∀vh ∈ Vh.

Problem 2. Let Ω ⊂ R2 be a convex polygonal domain, and let Th be a shape-regular
and quasi-uniform triangulation of Ω with element diameters uniformly equivalent to h.
Let also Vh ⊂ H1

0 (Ω) be a piecewise linear Lagrange finite element space. You may assume
the existence of an interpolation operator Ih : H1

0 (Ω)→ Vh satisfying

‖u− Ihu‖L2(Ω) + h‖u− Ihu‖H1(Ω) ≤ Ch2|u|H2(Ω).

(a) Let u(t) ∈ H1
0 (Ω) (0 ≤ t ≤ T ), u0, and f be sufficiently smooth such that∫

Ω

utv dx+

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx, v ∈ H1
0 (Ω), 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω.
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Write down the spatially semidiscrete (i.e., discretized in space but not in time) finite
element formulation of this problem. Denote by uh the solution to these finite element
equations.

(b) For 0 < t ≤ T , let now ũh(t) be the elliptic finite element approximation to u(t). That
is ∫

Ω

∇ũh(t) · ∇vh dx =

∫
Ω

∇u(t) · ∇vh dx, vh ∈ Vh.

Prove that∫
Ω

(uh − ũh)tvh dx+

∫
Ω

∇(uh − ũh) · ∇vh dx =

∫
Ω

(u− ũh)tvh dx, vh ∈ Vh, 0 < t ≤ T.

(c) Next recall Gronwall’s Lemma, which states that if σ and ρ are continuous real func-
tions with σ ≥ 0 and c ≥ 0 is a constant, and if

σ(t) ≤ ρ(t) + c

∫ t

0

σ(s) ds, t ∈ [0, T ],

then
σ(t) ≤ ectρ(t), t ∈ [0, T ].

Using this result, prove that

‖(uh − ũh)(T )‖2
L2(Ω) ≤ C(T )

(
‖(uh − ũh)(0)‖2

L2(Ω) +

∫ T

0

‖(u− ũh)t(s)‖2
L2(Ω) ds

)
.

(d) For the final part you will need the following intermediate result. Given v ∈ H1
0 (Ω)∩

H2(Ω), let vh ∈ Vh satisfy∫
Ω

∇vh · ∇whdx =

∫
Ω

∇v · ∇whdx, all wh ∈ Vh.

Then
‖v − vh‖L2(Ω) ≤ Ch2|v|H2(Ω).

Assuming this result and additionally that ‖(u−uh)(0)‖L2(Ω) ≤ Ch2|u(0)|H2(Ω), prove
that

‖(u− uh)(T )‖L2(Ω) ≤ C(T )h2

(
|u(0)|H2(Ω) +

(∫ T

0

|ut|2H2(Ω)

)1/2
)
.

Problem 3. Let (τ,P3,Σ) be a finite element, where τ is a triangle with vertexes P1,
P2, and P3, P3 is the set of cubic polynomials, and Σ is the set of degrees of freedom
that consists of the values at 9 points on the boundary, namely, three vertexes and two
additional points on each side of τ , chosen in such way that together with the vertexes
the four points are equally spaced on the side. The tenth degree of freedom is the average
of the function over the triangle normalized by the area of the triangle. This means that
the ”nodal” basis function φ10 corresponding to this ”degree of fredom” should be zero
on the boundary of τ and should satisfy 1

|τ |

∫
τ
φ10dx = 1. Find φ10 and the nodal basis

functions of this element corresponding to the vertex P1.
Hint: Use homogeneous (area) coordinates λ1, λ2, and λ3.
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