APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER
January 10, 2019
Applied Analysis Part, 2 hours

Name:

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as
possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem
has been stated incorrectly, indicate your interpretation in writing your answer. In such cases,
do not interpret the problem so that it becomes trivial.

Instructions: Do any four problems. Show all work clearly. State the problem that you are
skipping. No extra credit for doing all five.

Problem 1. Let A be an n x n self-adjoint matrix, with eigenvalues Ay > XAy > -+ > A,

(a) State the Courant-Fischer mini-max theorem.
(b) Let B = [by by] be a real n x 2 matrix, with by, by being linearly independent. Assume
that ||z = 1. If g(z) = 27 Az and §(z) = q(z)| gry—g, show that

Az < max §(z) < Ay
llzl|l=1

Problem 2. A sequence {f,} in # is said to be weakly convergent to f € H if and only if
limy, 00 fn, g) = (f, g) for every g € H. When this happens, we write f = w-lim, o fn. One
can show that every weakly convergent sequence is bounded.

(a) Let {¢n}22, be any orthonormal sequence. Show that w-lim, ,. ¢, = 0. (Hint: use
Bessel’s inequality.)

(b) Let K be a compact linear operator on a Hilbert space #{. Show that if w-lim, e fn = f,
then lim,, ,.. K f, = Kf.

(c) Define p(K), the resolvent set for K, and o(K), the spectrum of K. Use (a) and (b) to
show that 0 € o(K).

Problem 3. Let J[y] := fol (%y’z +yy' +y +y)dz. Find the extremal of J that satisfies natural
boundary conditions at z =0 and z = 1.

Problem 4. Consider the operator Lu = z?u” — zu' with domain Dy, := {u € L?[1,2] : Lu €
L2[1,2], u(1) = 0 & «/(2) = 0}. You are given that the homogenous solutions of Lu = 0 are 1
and z?, neither of which is in Dy,

(a) Compute the adjoint L*, along with the adjoint boundary conditions. Is L self adjoint?
(b) Compute the Green’s function for L.
(c) Is L™ compact? Justify your answer.

Problem 5. State and sketch a proof of the Weierstrass Approximation Theorem.
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Question I.

Consider the variational problem: find

w€ HY Q) =V, st au,v)= L) forall veV=HYN). (1)
Here @ = (0,1) % (0,1), I' = 8 is its boundary,
alu,v) = / Vu - Vodz +/uu ds, and L{v)= / guds, (2)
9 I r

where g is a given smooth function of T,
(a) Derive the strong form of problem (1).

(b) Let 75 be a shape-regular partitioning of {} into triangles. Introduce the finite dimensional space V¥,
consisting of continuous piecewise linear polynomials over 7. Show that ¥V, C V.,

(c) Consider the finite element approximation of (1): find
up € Vi, st a(up,v)=L(v) forall v E V. (3)

State (not prove) the optimal estimate for the error ||u — uy ||y assuming that the solution to (1) belongs
to the Sobolev space H?(£2). Derive a bound for ||u — up||z2(ny under the assumption of full regularity
of the problem (1).

(d) Assume that in the evaluation of the boundary term f[. upvds you have applied the composite trapezoidal
quadrature rule;

[rasm ¥ Bt + stea) == T @),

ech ech

where ¥ i the set of boundary edges and for e € %, ey, €2 are the endpoints of e (order is irrelevant)
and |e| is the length of e. In this way you have generated the approximate bilinear from

ap (up,v) = / Vuy, - Vedz + Z Qe(upv).
o ecl
State the FEM using this approximation (this is one of the cases of variational “crimes”). Show that

an(vn,vn) = c|lun|i?, Vup € Vi,

where c¢ is a constant only depending on (2.
Hint: Recall that there exists a constant C only depending on {2 such that for allv e V

C]vQSI[VTJ\2+/U2.
0 Q D

|a(un, v) — an(un,v)| < Chllup|v|lvlly  for wp,v € Vy,

(e) Show that

where C is a constant only depending on £2.
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Question II.
Consider the following initial boundary value problem: find u(-,t) == u(t) € V, with V := H}(£2), s.t.

(Z0l), ) + (Vo) V6) = (/#),8), YSEV, >0, ulw,0)=uo(s), ac, @)

where up : 8 - R and f: & x Ry — R are given functions and f(t) := f(,£).
Let V;, € V:= H3 () consists of continuous piecewise linear functions over a partition 75, of £} into triangles.

(a) Consider the semi-discrete (in space) Galerkin finite element approximation of (4): find uy(t) € Vy, s.t.

(%uh(t)sﬁf)) + (Vuh{t)a v¢) = (f(t)#qb): VeV, t>0, 'U'h(o) = Rpuo, (5)

where Rpug € V}, satisfies
(VRpuo, Vo) = (Vug, Vo), Yo € Vi,

Prove that the solution uy(t) satisfies the a priori estimate

flun (D] < IIUh(U)]Iz+Cnfcl I£(s)li*ds, ¢>0, , (6)

where ¢g is the constant in the Poincaré inequality ||v||% < ep|| Vo).

(b) Let k> 0 and set ¢, = nk for n = 0,1, .... The implicit Euler scheme approximating the problem (5) is
given by: Set U? = Ruu(0) = un(0), find U™ € V), recursively such that for n = 1,... it satisfies

n _ yjn—1
(F55—16) + (70", 98) = (1t ), Y0 € Vi

Prove an a priori estimate for this fully discrete method that is similar to estimate (6):
n
T < NUOIP + co D KILFEDIP.
=

Derive an a priori estimate for the error e = uy(t,) — U™.

Question ITI.

Let @ be the three dimensional cube
Q:{($1:$25$3)ER3|0S$1:S1) i=172)3})

and let Qg be the space of polynomials of degree 2 in each direction. Consider the point value evaluation
functionals defined for any p € Q5

oigk(P) = p(1/2,5/2,k/2)

for 4,4,k = 0,1, 2 Show that this choice of @, Qz, and degrees of freedom {o; ;x} is unisolvent.
Hint: you can use without proof the following result:

Let p be a polynomial of degree d > 1 that vanishes on the hyperplane given by the relation
hiz) = 0. Then p(z) = h(x)q(z), where ¢ is a polynomial of degree d — 1.
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