APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 10, 2019

Applied Analysis Part, 2 hours

Noma			
ranne.		 	

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Instructions: Do any four problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all five.

Problem 1. Let A be an $n \times n$ self-adjoint matrix, with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

- (a) State the Courant-Fischer mini-max theorem.
- (b) Let $B = [b_1 \ b_2]$ be a real $n \times 2$ matrix, with b_1, b_2 being linearly independent. Assume that ||x|| = 1. If $q(x) = x^T Ax$ and $\hat{q}(x) = q(x)|_{B^T x = 0}$, show that

$$\lambda_3 \le \max_{\|x\|=1} \hat{q}(x) \le \lambda_1.$$

Problem 2. A sequence $\{f_n\}$ in \mathcal{H} is said to be weakly convergent to $f \in \mathcal{H}$ if and only if $\lim_{n\to\infty} \langle f_n, g \rangle = \langle f, g \rangle$ for every $g \in \mathcal{H}$. When this happens, we write f = w- $\lim_{n\to\infty} f_n$. One can show that every weakly convergent sequence is bounded.

- (a) Let $\{\phi_n\}_{n=1}^{\infty}$ be any orthonormal sequence. Show that w- $\lim_{n\to\infty} \phi_n = 0$. (Hint: use Bessel's inequality.)
- (b) Let K be a compact linear operator on a Hilbert space \mathcal{H} . Show that if w- $\lim_{n\to\infty} f_n = f$, then $\lim_{n\to\infty} Kf_n = Kf$.
- (c) Define $\rho(K)$, the resolvent set for K, and $\sigma(K)$, the spectrum of K. Use (a) and (b) to show that $0 \in \sigma(K)$.

Problem 3. Let $J[y] := \int_0^1 \left(\frac{1}{2}y'^2 + yy' + y' + y\right) dx$. Find the extremal of J that satisfies natural boundary conditions at x = 0 and x = 1.

Problem 4. Consider the operator $Lu = x^2u'' - xu'$ with domain $\mathcal{D}_L := \{u \in L^2[1,2] : Lu \in L^2[1,2], u(1) = 0 \& u'(2) = 0\}$. You are given that the homogenous solutions of Lu = 0 are 1 and x^2 , neither of which is in \mathcal{D}_L .

- (a) Compute the adjoint L^* , along with the adjoint boundary conditions. Is L self adjoint?
- (b) Compute the Green's function for L.
- (c) Is L^{-1} compact? Justify your answer.

Problem 5. State and sketch a proof of the Weierstrass Approximation Theorem.

Applied Analysis/Numerical Analysis Qualifying Exam

January 10, 2019

Numerical Analysis Part, 2 hours

Name_

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Question I.

Consider the variational problem: find

$$u \in H^1(\Omega) \equiv \mathbb{V}, \quad \text{s.t. } a(u, v) = L(v) \text{ for all } v \in \mathbb{V} \equiv H^1(\Omega).$$
 (1)

Here $\Omega = (0,1) \times (0,1)$, $\Gamma = \partial \Omega$ is its boundary,

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} uv \, ds, \quad \text{and} \quad L(v) = \int_{\Gamma} gv \, ds,$$
 (2)

where g is a given smooth function of Γ .

- (a) Derive the strong form of problem (1).
- (b) Let \mathcal{T}_h be a shape-regular partitioning of Ω into triangles. Introduce the finite dimensional space \mathbb{V}_h consisting of continuous piecewise linear polynomials over \mathcal{T}_h . Show that $\mathbb{V}_h \subset \mathbb{V}$.
- (c) Consider the finite element approximation of (1): find

$$u_h \in \mathbb{V}_h$$
, s.t. $a(u_h, v) = L(v)$ for all $v \in \mathbb{V}_h$. (3)

State (not prove) the optimal estimate for the error $||u-u_h||_{\mathbb{V}}$ assuming that the solution to (1) belongs to the Sobolev space $H^2(\Omega)$. Derive a bound for $||u-u_h||_{L^2(\Omega)}$ under the assumption of full regularity of the problem (1).

(d) Assume that in the evaluation of the boundary term $\int_{\Gamma} u_h v ds$ you have applied the composite trapezoidal quadrature rule:

$$\int_{\Gamma} f \, \mathrm{d}s \approx \sum_{e \in \Sigma} \frac{|e|}{2} (f(e_1) + f(e_2)) := \sum_{e \in \Sigma} Q_e(f),$$

where Σ is the set of boundary edges and for $e \in \Sigma$, e_1 , e_2 are the endpoints of e (order is irrelevant) and |e| is the length of e. In this way you have generated the approximate bilinear from

$$a_h(u_h, v) = \int_{\Omega} \nabla u_h \cdot \nabla v \, \mathrm{d}x + \sum_{e \in \Sigma} Q_e(u_h v).$$

State the FEM using this approximation (this is one of the cases of variational "crimes"). Show that

$$a_h(v_h, v_h) \ge c \|v_h\|_{\mathbb{V}}^2, \quad \forall v_h \in \mathbb{V}_h,$$

where c is a constant only depending on Ω .

Hint: Recall that there exists a constant C only depending on Ω such that for all $v \in \mathbb{V}$

$$C \int_{\Omega} v^2 \le \int_{\Omega} |\nabla v|^2 + \int_{\Gamma} v^2.$$

(e) Show that

$$|a(u_h, v) - a_h(u_h, v)| \le Ch||u_h||_{\mathbb{V}}||v||_{\mathbb{V}}$$
 for $u_h, v \in \mathbb{V}_h$,

where C is a constant only depending on Ω .

Question II.

Consider the following initial boundary value problem: find $u(\cdot,t) := u(t) \in \mathbb{V}$, with $\mathbb{V} := H_0^1(\Omega)$, s.t.

$$(\frac{d}{dt}u(t),\phi) + (\nabla u(t),\nabla\phi) = (f(t),\phi), \quad \forall \phi \in \mathbb{V}, \quad t > 0, \quad u(x,0) = u_0(x), \quad x \in \Omega, \tag{4}$$

where $u_0: \Omega \to \mathbb{R}$ and $f: \Omega \times \mathbb{R}_+ \to \mathbb{R}$ are given functions and $f(t) := f(\cdot, t)$.

Let $\mathbb{V}_h \subset \mathbb{V} := H_0^1(\Omega)$ consists of continuous piecewise linear functions over a partition \mathcal{T}_h of Ω into triangles.

(a) Consider the semi-discrete (in space) Galerkin finite element approximation of (4): find $u_h(t) \in \mathbb{V}_h$ s.t.

$$\left(\frac{d}{dt}u_h(t),\phi\right) + \left(\nabla u_h(t),\nabla\phi\right) = (f(t),\phi), \quad \forall \phi \in \mathbb{V}_h, \quad t > 0, \quad u_h(0) = R_h u_0, \tag{5}$$

where $R_h u_0 \in \mathbb{V}_h$ satisfies

$$(\nabla R_h u_0, \nabla \phi) = (\nabla u_0, \nabla \phi), \quad \forall \phi \in \mathbb{V}_h.$$

Prove that the solution $u_h(t)$ satisfies the a priori estimate

$$||u_h(t)||^2 \le ||u_h(0)||^2 + c_0 \int_0^t ||f(s)||^2 ds, \quad t > 0,$$
 (6)

where c_0 is the constant in the Poincaré inequality $||v||^2 \le c_0 ||\nabla v||^2$.

(b) Let k>0 and set $t_n=nk$ for n=0,1,... The implicit Euler scheme approximating the problem (5) is given by: Set $U^0=R_hu(0)=u_h(0)$, find $U^n\in\mathbb{V}_h$ recursively such that for n=1,... it satisfies

$$\left(\frac{U^n - U^{n-1}}{k}, \phi\right) + (\nabla U^n, \nabla \phi) = (f(t_n), \phi), \ \forall \phi \in \mathbb{V}_h.$$

Prove an a priori estimate for this fully discrete method that is similar to estimate (6):

$$||U^n||^2 \le ||U^0||^2 + c_0 \sum_{j=1}^n k||f(t_j)||^2.$$

Derive an a priori estimate for the error $e = u_h(t_n) - U^n$.

Question III.

Let Q be the three dimensional cube

$$Q = \Big\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \ \big| \ 0 \le x_i \le 1, \quad i = 1, 2, 3 \Big\},\$$

and let Q_2 be the space of polynomials of degree 2 in each direction. Consider the point value evaluation functionals defined for any $p \in Q_2$

$$\sigma_{i,j,k}(p) = p(i/2, j/2, k/2)$$

for i, j, k = 0, 1, 2 Show that this choice of Q, Q_2 , and degrees of freedom $\{\sigma_{i,j,k}\}$ is unisolvent. Hint: you can use without proof the following result:

Let p be a polynomial of degree $d \ge 1$ that vanishes on the hyperplane given by the relation h(x) = 0. Then p(x) = h(x)q(x), where q is a polynomial of degree d - 1.