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Function spaces and operators.

e Banach and Hilbert spaces

e L2 spaces

Sobolev spaces

C* and sequence spaces

Riesz Representation Theorem

Approximation Analysis.

e Completeness of orthonormal expansions
e Fourier series

FFT

Weierstrass approximation theorem
Splines

Compact operators.

Finite rank and Hilbert-Schmidt operators
Spectral theory

Integral equations

Contraction mapping theorem & Neumann series

Differential Operators.

Distributions

e Green’s functions

e Sturm-Liouville problems

e Courant-Fischer minimax theorem
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1. Finite element method
(Johnson, Ciarlet, Strang & Fix, Ern & Guermond, Grossmann et al)

(1) Weak (variational) formulation of second order elliptic problems and characteri-
zation of the energy space: essential and natural boundary condition.

{2) Ritz-Galerkin method and finite element method.

(3) Finite element spaces of picce-wise linear and quadratic polynomials (over tri-
angles and tetrahedra) and piece-wise bilinear and biquadratic polynomials over
rectangles. .

{4) Error estimates, Bramble-Hilbert lemma, Nitsche trick. Strans’s Lemmas.

(5} Variational ”crimes”: nonconforming spaces, and approximation of the bilinear
and linear forms by quadrature rules.

{6) Galerkin finite element method for transient problems.

2. Numerical methods for parabolic problems
(Johnson, Larsen &Thomee)

{1} Finite difference approximations in time: explicit, implicit and Crank-Nicolson
schemes, multistep methods, Runge-Kutta methods.

{2} Stability: maximum principle, Fourier mode analysis, matrix stability and energy
type estimates (Courant condition).

{3} Error estimates for finite element and finite difference approximations.
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