APPLIED ANALYSIS QUALIFIER SYLLABUS

12/2020

Function spaces and operators.

- Banach and Hilbert spaces
- L^2 spaces
- Sobolev spaces
- \bullet C^k and sequence spaces
- Riesz Representation Theorem

Approximation Analysis.

- Completeness of orthonormal expansions
- Fourier series
- FFT
- Weierstrass approximation theorem
- Splines

Compact operators.

- Finite rank and Hilbert-Schmidt operators
- Spectral theory
- Integral equations
- Contraction mapping theorem & Neumann series

Differential Operators.

- Distributions
- Green's functions
- Sturm-Liouville problems
- Courant-Fischer minimax theorem

References.

- James P. Keener: Principles of Applied Mathematics: Transformation and Approximation second (revised) edition, Westview Press, Boulder, Colorado, 2000.
- G. P. Tolstov: Fourier Series, Dover Publications, New York, 1976.
- H. J. Wilcox and D. L. Meyers: An Introduction to Lebesgue Integration and Fourier Series, Dover Publications, New York, 1994.
- F. Riesz and B. Sz.-Nagy: Dover Publications, New York, 1990.

PROPOSED CONTENT OF THE QUALIFYING EXAM ON APPL. MATH/NUMERICAL ANALYSIS. Part II. Numerical Analysis

Completed by Jean-Luc Guermond, Raytcho Lazarov and Joseph Pasciak, September, 2008

Content

- (1) Finite element method
- (2) Numerical methods for parabolic equations
- (3) References

1. Finite element method

(Johnson, Ciarlet, Strang & Fix, Ern & Guermond, Grossmann et al)

- (1) Weak (variational) formulation of second order elliptic problems and characterization of the energy space: essential and natural boundary condition.
- (2) Ritz-Galerkin method and finite element method.
- (3) Finite element spaces of piece-wise linear and quadratic polynomials (over triangles and tetrahedra) and piece-wise bilinear and biquadratic polynomials over rectangles.
- (4) Error estimates, Bramble-Hilbert lemma, Nitsche trick. Strans's Lemmas.
- (5) Variational "crimes": nonconforming spaces, and approximation of the bilinear and linear forms by quadrature rules.
- (6) Galerkin finite element method for transient problems.

2. Numerical methods for parabolic problems

(Johnson, Larsen & Thomee)

- (1) Finite difference approximations in time: explicit, implicit and Crank-Nicolson schemes, multistep methods, Runge-Kutta methods.
- (2) Stability: maximum principle, Fourier mode analysis, matrix stability and energy type estimates (Courant condition).
- (3) Error estimates for finite element and finite difference approximations.

3. References

- (1) S. Larsen and V. Thomee, Partial Differential Equations with Numerical Methods, Springer-Verlag, Texts in Applied Mathematics 45, 2003
- (2) C. Johnson, Numerical Solutions of PDE's by the Finite Element Method, Cambridge University Press, 1987.
- C. Grossmann, H.-G. Roos, and M. Stynes, Numerical Treatment of PDEs, Springer, 2007.
- (4) A. Ern and J-L Guermond, Theory and Practice of Finite Elements, Springer, 2004.
- (5) Ph. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, 2002.
- (6) G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973.