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Syllabus
Qualifying Examination
Complex Analysis

ARITHMETIC, GEOMETRY, AND TOPOLOGY OF THE COMPLEX NUM-
BERS: Field operations; stereographic projection; spherical metric; simple and
multiple connectivity.

. ANALYTIC FUNCTIONS: Cauchy—Riemann equations; power series; harmonic

functions.

COMPLEX INTEGRATION: Cauchy’s theorem; Goursat’s proof; Cauchy’s inte-
gral formula; residue theorem; computation of definite integrals by residues.

CONFORMAL MAPPING: linear fractional transformations and cross ratio; map-
pings by elementary functions; Riemann mapping theorem.

SINGULARITIES: classification of isolated singularities; Laurent series; Casorati—
Weierstrass theorem; Picard’s theorems.

GEOMETRIC FUNCTION THEORY: winding numbers and the argument prin-
ciple; open mapping theorem; maximum principle; Schwarz lemma; three-circles
theorem.

ANALYTIC CONTINUATION: Schwarz reflection principle; continuation along a
path; monodromy theorem.

. CONVERGENCE AND APPROXIMATION: normal families; Hurwitz’s theorem;

Runge’s theorem; Mittag-Leffler’s theorem; infinite products; factorization theo-
rems of Weierstrass and Hadamard.
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