Real Analysis Qualiftying Exam January 2016

Do as many problems as you can. Start each problem on a separate sheet of paper. Unless otherwise specified, the measure involved in each problem is the **Lebesgue measure**.

#1. Let E be a measurable subset of [0,1]. Suppose there exists $\alpha \in (0,1)$ such that

$$m(E \cap J) \ge \alpha \cdot m(J)$$

for all subintervals J of [0,1]. Prove that m(E)=1.

#2. Let $f, g \in L^1([0,1])$. Suppose

$$\int_0^1 x^n f(x) dx = \int_0^1 x^n g(x) dx$$

for all integers $n \ge 0$. Prove that f(x) = g(x) a.e.

#3. Let $f, g \in L^1([0,1])$. Assume for all functions $\varphi \in C^{\infty}[0,1]$ with $\varphi(0) = \varphi(1)$, we have

$$\int_0^1 f(t)\varphi'(t)dt = -\int_0^1 g(t)\varphi(t)dt.$$

Show that f is absolutely continuous and f' = g a.e.

#4. Let $\{g_n\}$ be a sequence of measurable functions on [0,1] such that

- (i) $|g_n(x)| \le C$, for a.e. $x \in [0, 1]$
- (ii) and $\lim_{n\to\infty} \int_0^a g_n(x) dx = 0$ for every $a \in [0,1]$.

Prove that for each $f \in L^1([0,1])$, we have

$$\lim_{n \to \infty} \int_0^1 f(x)g_n(x)dx = 0.$$

#5. (a) Let X be a normed vector space and Y be a closed linear subspace of X. Assume Y is a proper subspace, that is, $Y \neq X$. Show that, for $\forall 0 < \varepsilon < 1$, there is an element $x \in X$ such that ||x|| = 1 and

$$\inf_{y \in Y} \|x - y\| > 1 - \varepsilon$$

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit ball of X is not compact.

#6. Let $\{f_k\}$ be a sequence of increasing functions on [0,1]. Suppose

$$\sum_{k=1}^{\infty} f_k(x)$$

converges for all $x \in [0,1]$. Denote the limit function by f, that is,

$$f(x) = \sum_{k=1}^{\infty} f_k(x).$$

Prove that

$$f'(x) = \sum_{k=1}^{\infty} f'_k(x)$$
, a.e. $x \in [0, 1]$.

#7. Suppose $f, g : [a, b] \to \mathbb{R}$ are both continuous and of bounded variation. Show that the set

$$\{(f(t), g(t)) \in \mathbb{R}^2 : t \in [a, b]\}$$

cannot cover the entire unit square $[0,1] \times [0,1]$.

#8. Prove the following two statements:

(a) suppose f is a measurable function on [0, 1], then

$$||f||_{L^{\infty}} = \lim_{p \to \infty} ||f||_{L^p}$$

(b) If $f_n \geq 0$ and $f_n \to f$ in measure, then $\int f \leq \liminf \int f_n$.

#9. Suppose $\{f_n\}$ is a sequence of functions in $L^2([0,1])$ such that $||f_n||_{L^2} \leq 1$. If f is measurable and $f_n \to f$ in measure, then

- (a) $f \in L^2([0,1]);$
- (b) $f_n \to f$ weakly in L^2 ;
- (c) $f_n \to f$ with respect to norm in L^p for $1 \le p < 2$.

Hint for part (b): Use Vitali convergence theorem, that is, if $g_n \to g$ pointwise a.e. on [0,1] and $\{g_n\}$ is uniformly integrable, then

$$\lim_{n \to \infty} \int_0^1 g_n = \int_0^1 g$$

Recall that $\{g_n\}$ being uniformly integrable means that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\int_{A} |g_n| < \varepsilon$$

for all n and all measurable $A \subseteq [0,1]$ with $m(A) < \delta$.

Hint for part (c): use the fact that, if g_n is a sequence in $L^p([0,1])$ that converges pointwise a.e. to $g \in L^p([0,1])$, then g_n converges to g in norm if and only if $\{|g_n|^p\}$ is uniformly integrable.

#10. Suppose E is a measurable subset of [0,1] with Lebesgue measure $m(E) = \frac{99}{100}$. Show that there exists a number $x \in [0,1]$ such that for all $r \in (0,1)$,

$$m(E \cap (x-r,x+r)) \ge \frac{r}{4}.$$

Hint: Use the Hardy-Littlewood maximal inequality:

$$m(\{x \in \mathbb{R} : Mf(x) \ge \alpha\}) \le \frac{3}{\alpha} ||f||_1$$

for all $f \in L^1(\mathbb{R})$. Here Mf denotes the Hardy-Littlewood Maximal function of f.