GEOMETRY AND TOPOLOGY QUALIFIER

Instructions. Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

- 1. Let X be a compact metric space. Prove that (a) every real valued continuous function on X has a maximum value; (b) every continuous function on X is uniformly continuous.
- 2. Let S^1 be the circle $S^1 = \{e^{i2\pi t} : t \in \mathbb{R}\}$. Define an equivalence relation \sim on S^1 by: $e^{i2\pi t_1} \sim e^{i2\pi t_2}$ iff $t_1 t_2$ is an integer multiple of $\sqrt{2}$. Prove that the quotient space $X = S^1/\sim$ is not Hausdorff and find all continuous functions on X.
- 3. Let $SL_n(\mathbb{R})$ be the $n \times n$ matrices with real entries and determinant 1. Prove that $SL_n(\mathbb{R})$ is a noncompact smooth manifold and find the dimension of the manifold.
- 4. Let $X_1 = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$ and $X_2 = -x_2^2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2}$ be two smooth vector fields on \mathbb{R}^2 . Is there a coordinator chart (y, U) for a neighborhood U of (1, 1) such that $X_1 = \frac{\partial}{\partial y_1}$ and $X_2 = \frac{\partial}{\partial y_2}$? Prove your claim.
- 5. Let $S^2=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}$ be given the standard Riemannian metric inherited from \mathbb{R}^3 . The projective space \mathbb{P}^2 is obtained from S^2 by identifying all antipodal points, i.e. $\mathbb{P}^2=S^2/\sim$, where two points $p\sim q$ iff p=-q. Let π be the canonical map from S^2 to \mathbb{P}^2 by mapping each point to its equivalence class.
 - (a) prove that P² is a compact smooth manifold;
- (b) prove that there exists a unique Riemannian metric on \mathbb{P}^2 such that its pullback (by π) to S^2 is the standard Riemannian metric on S^2 ;
- (c) find all geodesics on \mathbb{P}^2 with respect to the Riemannian metric in (b) and prove that every two distinct geodesics intersect exactly once;
 - (d) compute the curvature of the above Riemannian metric on \mathbb{P}^2 .