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Abstract

Atherosclerosis is a form of cardiovascular disease characterized by
an accumulation of cellular debris and inflammation in the innermost
layer of the arterial wall. Statin drugs have been the primary method
for treating atherosclerotic lesions, but recent research suggests that
lifestyle changes, in particular consuming a diet rich in antioxidants,
may be equally effective at preventing and potentially reversing the
process of atherogenesis. In this paper, two mathematical models are
developed to simulate the effects of antioxidants on lesion regression
and the reaction-diffusion process of atherosclerosis at the biological
level. The first model is a system of six ordinary differential equa-
tions, and the second is a one-dimensional spatial model composed of
six partial differential equations. The ordinary differential equation
model helps to define a healthy state through the computation of equi-
librium values over a spatially uniform domain. Meanwhile, the partial
differential equation system adopts the form of a discrete Taylor series
approximation in order to model atherosclerosis under distinct param-
eters and boundary conditions. To avoid a numerical instability, a
finite difference scheme is used to develop a diffusion coefficient for the
model. Through the use of these equations, applied mathematicians
can supply cardiologists with means for simulating and numerically
analyzing various lesion regression scenarios.

1 Introduction

Heart disease is currently the leading cause of death in the United States. As
of 2005, coronary heart disease (CHD) was responsible for approximately one
of every five deaths in the U.S. [7]. Atherosclerosis is a specific type of heart
disease, which can be described as an accumulation of modified lipoproteins
and immune cells in the interior layer of the arterial wall. This agglomeration
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of cellular debris in the form of a lesion is primarily due to an inefficient
immune system response and chronic inflammation [9]. Although plaque will
augment in a variety of vessels carrying blood away from the heart, lesions
have a tendency to form in larger arteries including the abdominal aorta,
coronary arteries, and cerebral arteries [3]. Atherosclerosis is a precarious
illness in that an accretion of plaque can serve as a precursor for more serious
heart-related events including stroke or heart attack.

1.1 Lipoproteins and Artery Physiology

In order to model the behavior of atherosclerosis, it is first necessary to
discern how lesions evolve at the molecular and biological level. This pro-
cess can be understood best by examining the role of lipoproteins in the
blood and the physiology of a human artery. Lipoproteins are micellar par-
ticles responsible for regulating cholesterol in the blood. There are four
types of lipoproteins, namely very low-density lipoprotein, intermediate-
density lipoprotein, low-density lipoprotein (LDL), and high-density lipopro-
tein (HDL) [3]. For the purpose of this research endeavor, LDL, which is
commonly perceived as the bad type of cholesterol, was of primary con-
cern. In terms of physiology, a human artery is composed of three layers,
namely the intima, media, and adventitia, which extend from the innermost
layer lining the bloodstream to the exterior wall of the artery respectively.
Atherosclerotic lesion growth develops within the intima, which accounts
for less than ten percent of the entire arterial wall. The first biological
event that triggers lesion growth within the intima is called endothelial dys-
function, which can be described as a change in permeability of the thin
endothelial lining separating the intima from the arterial blood [10]. This
event allows for enriched low-density lipoproteins to diffuse through the
endothelium, which can be perceived as a one-way gate. Consequently, en-
dothelial dysfunction is also characterized by an increase in adhesiveness,
which consequently provides an ideal setting for lesion growth.

1.2 Inflammation and Foam Cell Development

It is also critical to understand the role that free radicals play in modifying
low-density lipoprotein as well as the interaction between the human immune
system and these foreign bodies. Interestingly, the low-density lipoprotein
alone is not detrimental to the development of atherosclerosis. Instead, ge-
netic alterations and the production of free radicals due to lifestyle behav-
iors and illnesses including cigarette smoking, diabetes, and hypertension
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will stimulate endothelial dysfunction by chemically modifying LDL into a
dangerous oxidized state [10]. The human immune system will attempt to
destroy these foreign lipoproteins by sending macrophages to the site of LDL
oxidation within the intima. Macrophages, which are a type of white blood
cell that engorge foreign biological particles, are unable to destroy the ox-
idized LDL. Inflammation will form within the intima as the macrophages
and oxidized low-density lipoproteins create a type of debris called foam
cells. The immune system continues to send additional macrophages to at-
tack the oxidized low-density lipoproteins, which consequently results in an
accretion of foam cells and lesion growth.

Figure 1: The biological process by which lesion growth occurs.

1.3 Antioxidants as a Treatment Method

The genesis of plaque formation in the intima can be attributed to a high
free radical concentration triggering the modification of low-density lipopro-
tein into an oxidized form. Thus, it is necessary to block the behavior
of free radicals in order to prevent atherosclerotic lesion growth. Although
conventional medicine has provided numerous pharmaceutical treatment op-
tions specifically targeting low-density lipoprotein production, these drugs
can produce adverse side effects involving the liver, kidneys, and skeletal
muscle system including myalgia, myositis, muscular cramps, and weakness
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[13]. Thus, the motivation to discover alternative treatment methods for
atherosclerosis is currently very strong. Numerous studies, including one
recently conducted in Korea, suggest that high intakes of antioxidants1 ap-
pear to prevent atherosclerotic lesions from developing. In particular, large
quantities of antioxidants will prevent a high free radical concentration from
inciting LDL oxidation [11].

Thus, it is interesting to learn how effective an anti-inflammatory diet
rich in antioxidants is at reversing lesion growth in an individual diagnosed
with atherosclerosis. To this end, we develop two mathematical models,
both of which simulate foam cell accumulation within the intima layer of
the arterial wall. The first model is a system of six ordinary differential
equations, while the second model is a one-dimensional spatial model com-
prised of six partial differential equations. Parameters were applied to these
models and then altered to simulate various lesion growth and regression
scenarios over both spatially uniform and finitely varied domains.

2 The Ordinary Differential Equation Model

The first step towards simulating plaque development in the intima was
to develop a system of differential equations that would simulate key com-
ponents in the biological growth process of an atherosclerotic lesion. This
initial model is composed of six unique ordinary differential equations where
t stands for time, and L, R, X, I, D, and C represent the concentrations
of low-density lipoprotein, free radicals, oxidized low-density lipoprotein,
immune cells, debris, and chemoattractant respectively. These individual
formulae are based upon those given by Ibragimov, McNeal, Ritter, and Wal-
ton. They vary, however, in that both a function representing low-density
lipoprotein concentration in the blood, ψL(B−L), and a component model-
ing the quantity of chemoattractant triggering an immune system response
ψCC, though discussed in [4], have been added to the equations L and I
respectively. Within these additional components, ψL and ψC are reaction
rate coefficients and B is the constant low-density lipoprotein concentration
in the blood. Initially, we begin the modeling process of atherogenesis with
the following ordinary differential equation model:

dL

dt
= −αLLR+ πLπXaX + ψL(B − L),

1Antioxidant substances include beta-carotene, lutein, lycopene, selenium, vitamin A,
vitamin C, and vitamin E. Although antioxidants are primarily found in fruits and veg-
etables, they are also found in nuts, grains, and some meats, poultry, and fish [8].
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dR

dt
= σ − αRLR− πRa,

dX

dt
= αXLR− βXXI − πxaX, (1)

dI

dt
= βIXI + γIID − µII + ψCC,

dD

dt
= βDXI − γDID − µDD,

dC

dt
= χDD − χCCI − µCC,

where a represents antioxidant intake levels, and σ is a constant representing
lifestyle behaviors characteristic of cardiovascular disease, which ultimately
dictates free radical concentration. Other parameters in (1) include αL, αR,
and αX , which are all coefficients representing the rate at which low-density
lipoproteins progress to the oxidized state, and βX , βI , and βD, which il-
lustrate the rate at which oxidized low-density lipoproteins will evolve into
foam cells with the assistance of the macrophages. The parameters µC , µD,
µI , γD, γI , χC , and χD are death rates that prevent the development of
debris through the chemoattractant stimulating the immune response of the
macrophages. Furthermore, πR, πX , and πL are coefficients for the rate at
which antioxidants block the process of low-density lipoprotein oxidation.

2.1 Initial Conditions for Lesion Growth

It was necessary to assign values to the parameters in (1) that would yield
lesion growth. One requirement is that there exists a small presence of low-
density lipoprotein (L), free radicals (R), oxidized low-density lipoprotein
(X), and chemoattractant (C) in order for foam cell formation to occur.
Furthermore, the low-density lipoprotein blood concentration (B) must be
equal to the initial value of low-density lipoprotein (L).

Component B L R X I D C t ∆t
Initial Value 1 1 1 1 0 0 1 0 0.01

Table 1: Initial conditions for lesion growth simulation.

Numerical estimates were assigned to the coefficients in (1) based upon a
literary search [1]. To avoid the process of denominalization, these coefficient
values were ranked along a zero to one time scale according to the rate
at which each atherogenic process occurs. Also taken into consideration
was the known concept that low-density lipoprotein oxidation occurs at a
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quicker rate than foam cell formation and the necessary conditions that
αL + αR = αX and βX + βI = βD [5].

Parameter Value Parameter Value
σ 1 a 1
ψL 0.01 ψC 0.01
αL 0.25 αR 0.25
αX 0.5 βX 0.25
βI 0.25 βD 0.5
πL 0.5 πR 0.25
πX 0.5 µI 0.25
µD 0.25 µC 0.25
γI 0.25 γD 0.25
χD 0.5 χC 0.25

Table 2: Parameter Estimates for the ODE Model (1).

Notice the parameter values σ = 1 and a = 1 in Table 2, where σ rep-
resents detrimental lifestyle behavior that consequently bolsters free radical
production, while a denotes the antioxidant intake quantity. Let a = 1 de-
note the antioxidant intake of an average American. This quantity is below
the recommended daily antioxidant intake dosage, and thus is representative
of an unhealthy parameter2 [2].

2.2 Definition of a Healthy State

In order to analyze effectively both lesion growth and regression, it was nec-
essary to define first a healthy state, which is mathematically characterized
through equilibrium values. In particular, the system of ordinary differential
equations (1) can be broken into two subsets, namely functions that dictate
the oxidation process of low-density lipoprotein and equations that control
immune and debris cell accumulation. Because foam cell formation is a con-
sequence of the oxidative process of LDL, a healthy state can be numerically
computed by setting to zero the equations D(t), I(t), and C(t) in (1). Thus,
a healthy state is medically perceived as one with an absence of debris (or
more realistically, a low-presence of debris). Therefore, the original set of
six equations in (1) reduces to a system of three, where equilibrium values
can be computed for L(t), R(t), and X(t):

2In 2004, the average daily consumption of antioxidant-rich fruits and vegetables was
1.03 and 1.58 cups. These quantities are approximately 40 percent lower than the recom-
mended intake values of 1.80 cups of fruit and 2.60 cups of vegetables per day.
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0 = −αLLR+ πLπXaX + ψL(B − L),
0 = σ − αRLR− πRa,
0 = αXLR− βXXI − πxaX.

Setting these parameters equal to the initial conditions in (1) and coef-
ficients in (2) yielded equilibrium values of L(t) = 1 and R(t) = X(t) = 3.

3 The Partial Differential Equation Model

The system of ordinary differential equations (1) only account for change
with respect to time. Thus, it was necessary to incorporate a spatial compo-
nent (x) into this model to account for individualistic growth over a discrete
bounded space interval.

Figure 2: Cross-sectional view of a human artery showing the location of x
over a space interval [a, b].

Adding x into (1) yielded the following set of partial differential equa-
tions:

∂L

∂t
=

∂2t

∂x2
− αLLR+ πLπXaX + ψL(B − L),

∂R

∂t
=

∂2t

∂x2
+ σ − αRLR− πRa,

∂X

∂t
=

∂2t

∂x2
+ αXLR− βXXI − πxaX, (2)

∂I

∂t
=

∂2t

∂x2
+ βIXI + γIID − µII + ψCC,

∂D

∂t
=

∂2t

∂x2
+ βDXI − γDID − µDD,

∂C

∂t
=

∂2t

∂x2
+ χDD − χCCI − µCC,

In order to analyze various lesion regression scenarios using the partial
differential equation model (2), quantities were analyzed discretely with a
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Taylor series approximation. In general, a first order Taylor series of a
function of two variables is:

F (t+ δt, x+ δx) ≈ F (t, x) +
∂F

∂t
δt+

∂F

∂x
δx.

Thus, an approximation over discrete intervals ∆x and ∆t is:

F (t+ ∆t, x) ≈ F (t, x) +
∂F

∂t
∆t,

≈ F (t, x) +
F (t,x+∆x)−F (t,x)

∆x − F (t,x)−F (t,x−∆x)
∆x

∆x
∆t. (3)

3.1 Boundary Conditions

The next mathematical component that was included in the engineering
of this model took into consideration conditions along the two boundary
points a and b. The spatial domain of this model will be defined over the
discrete space interval [0, 10]. Let the boundary upon which free transport
of low-density lipoproteins exists due to an ambient blood concentration be
denoted by a = 0. Recall that transport exists in only one direction as the
endothelium serves as a one-way gate. Meanwhile, let b = 10 represent the
boundary upon which forces press the intima against the media layer of the
human artery. These boundary conditions in combination with the time
derivative and spatial component provide a discrete approximation for the
partial differential equation model [see appendix].

3.2 Application of a Finite Difference Scheme

To avoid a numerical instability as t grew large, a diffusion coefficient (τ) was
incorporated into the discrete approximation the partial differential equation
model (2) through the application of a finite difference scheme [12]:

F (t+ ∆t, x)− F (t, x)
k

= b
F (t, x+ ∆x)− 2F (t, x) + F (t, x−∆x)

h2
,

or similarly,

F (t+ ∆t, x) = (1− 2bτ)F (t, x) + bτ(F (t, x+ ∆x) + F (t, x−∆x)),

where τ = kh−2.
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3.3 Additional Parameters

Since including both a spatial component and diffusion coefficient in the
original model, it then became necessary to define two new parameters and
to alter one previously set initial condition for ∆t:

Variable t ∆t x ∆x τ

Initial Value 0 0.0001 0 1 0.01

Table 3: New and additional initial conditions in the PDE model.

Note that it is a necessary condition for stability that ∆t < ∆x. This
follows from the Courant-Friedrichs-Lewy Condition, which states that the
magnitude of aλ be at most one is the stability condition for finite difference
schemes for hyperbolic systems in one space dimension. In other words,
|aλ| ≤ 1, where λ denotes time divided by space [12].

3.4 Lesion Regression over a Spatially Uniform Domain

The first step towards numerically analyzing outputs from the PDE model
with spatially uniform initial conditions was to compute the maximum value
of debris (maxD(t) : 0 ≤ t ≤ ∞) over a time enduring interval. After
applying the parameters from Table 2 and Table 3, the biological system
will begin to naturally stabilize when t > 10000. The following limit values
were calculated as t −→ ∞ at the spatial point x = 5: L(t, 5) = 0.9543,
R(t, 5) = 0.9609, X(t, 5) = 0.4087, I(t, 5) = 2.5283, D(t, 5) = 0.5859, and
C(t, 5) = 0.3321.

Over the interval [0,∞), debris reached a maximum value at the point
D(8208) = 0.6764. If this quantity is medically perceived as complete block-
age, parameters for lesion regression can be imposed prior to this point in
time for which the biological system reaches a maximum value of debris
accretion. Lesion growth circa seventy percent of complete blockage places
an individual at an elevated risk of experiencing a cardiac event [6]. Thus,
healthy parameters should be imposed when D(t) < 0.4735. Therefore, let
these conditions be applied at the point D(6500) = 0.4603, where lesion
growth reaches approximately 68 percent of its maximum value.

Thus, to simulate lesion regression3 through time, a total of one million
iterations were computed over the time interval [0, 10000], where the values

3This example is one particular application of the partial differential equation model for
atherosclerotic lesion growth with spatially uniform initial conditions. Both the duration
of time iterations after healthy parameter values are imposed, as well as the time at which
these conditions are applied will influence the percentage of lesion regression.
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Figure 3: Evidence of stability when t > 10000.

in the time range [0, 6500) were driven by unhealthy parameters, namely
a = 1 and σ = 1, and the final iterations over the interval [6500, 10000]
were dictated by healthy parameters, where 1 < a and 0 ≤ σ ≤ 1. The
percent lesion regression was first calculated by taking the maximum size
of the atherosclerotic lesion (maxD(t) : 0 ≤ t ≤ ∞), which occurred at t ≥
6500 because there exists a small time lapse for which the biological system
must adapt to the newly imposed parameters. The time duration of this
transition phase decreases in length as a increases. The difference between
maxD(t) : 0 ≤ t ≤ ∞ and the size of the lesion at the points D(8000) and
D(9500) was computed to determine the percent lesion regression exactly
1500 and 3000 time units after healthy parameters were first applied to the
biological system.

3.5 Spatially Inconsistent Lesion Growth and Regression

Another topic worth investigating was lesion growth over a domain where
debris was unevenly distributed. Let I[3] = D[3] = 0.3, I[4] = D[4] =
I[2] = D[2] = 0.2, and I[5] = D[5] = I[1] = D[1] = 0.1. Meanwhile, let
all other initial values for I[x] and D[x] equal zero. Under these initial
conditions, plaque will augment within the artery until evenly distributed
over the spatial domain. The lesion will then proceed to grow uniformly.
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Figure 4: Lesion growth and regression with spatially uniform initial condi-
tions.

4 Analysis of Results and Conclusions

In this paper, a one-dimensional spatial model comprised of six partial dif-
ferential equations was used to model the process of atherosclerotic lesion
growth and regression in the human artery. After establishing for this model
initial parameters for stimulating debris accretion, unique conditions along
the boundary points a = 0 and a = 10, and a diffusion coefficient (τ) for
numerical stability, it was possible to simulate the progression and regres-
sion of atherogenesis by simply altering values for a and σ. As evidenced in
Table 4 and Table 5, significant lesion regression is most prominent when
a increases and σ decreases. Though the model yields staggering results
as a grows large, suggesting that with time it is possible to eliminate the
presence of lesion debris almost entirely, a question worth proposing is what
maximum quantity of antioxidants can the body absorb daily? Though it
is difficult to numerically assess the body’s maximum level of antioxidant
absorbency, knowing such a number would place an upper bound on a al-
lowing for a more realistic interpretation of the regression scenarios provided
by this model.

In addition to showing the results of lesion regression over a spatially
uniform domain, the PDE model also demonstrated the process by which
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a σ = 1 σ = 0.5 σ = 0
1.69 29.53% 30.11% 30.69%
2 44.99% 45.41% 45.82%
3 65.65% 65.80% 65.94%
5 78.51% 78.59% 78.68%
8 86.05% 86.10% 86.15%
10 88.51% 88.55% 88.59%

Table 4: Lesion regression after 1500 time units.

a σ = 1 σ = 0.5 σ = 0
1.69 43.64% 44.67% 45.68%
2 67.83% 68.37% 68.91%
3 89.52% 89.63% 89.74%
5 95.15% 95.18% 95.21%
8 97.56% 97.57% 97.58%
10 98.20% 98.21% 98.22%

Table 5: Lesion regression after 3000 time units.

lesion growth attempts to reach spatial uniformity over a domain with varied
initial levels of debris. Ultimately, both the spatially varied and uniformly
constant examples involving the PDE model revealed that increasing an-
tioxidant consumption, regardless of changes in lifestyle behavior, will block
the process of low-density lipoprotein oxidation, which consequently triggers
lesion regression in patients diagnosed with athlerosclerosis.
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Appendix

The following is a discrete approximation for the PDE model (2) with im-
plemented boundary conditions over the space interval [0,10]:

L(t+ ∆t, x)

= L(t, x) +





(
L(t,x+∆x)−L(t,x)

∆x
−ψL(B−L)

∆x

)
∆t, if x = 0,

(
L(t,x+∆x)−2L(t,x)+L(t,x−∆x)

∆x2

)
∆t, if 0 < x < 10,(

0− L(t,x)−L(t,x−∆x)
∆x2

)
∆t, if x = 10,

+ (−αLLR+ πLπXaX + ψL(B − L))∆t,

R(t+ ∆t, x)

= R(t, x) +





(
R(t,x+∆x)−R(t,x)

∆x2

)
∆t, if x = 0,(

R(t,x+∆x)−2R(t,x)+R(t,x−∆x)
∆x2

)
∆t, if 0 < x < 10,(

0− R(t,x)−R(t,x−∆x)
∆x2

)
∆t, if x = 10,

+ (σ − αRLR− πRa)∆t,

X(t+ ∆t, x)

= X(t, x) +





(
X(t,x+∆x)−X(t,x)

∆x2

)
∆t, if x = 0,(

X(t,x+∆x)−2X(t,x)+X(t,x−∆x)
∆x2

)
∆t, if 0 < x < 10,(

0− L(t,x)−L(t,x−∆x)
∆x2

)
∆t, if x = 10,

+ (αXLR− βXXI − πxaX)∆t,

I(t+ ∆t, x)

= I(t, x) +





(
I(t,x+∆x)−I(t,x)

∆x2

)
∆t, if x = 0,(

I(t,x+∆x)−2I(t,x)+I(t,x−∆x)
∆x2

)
∆t, if 0 < x < 10,(

0− I(t,x)−I(t,x−∆x)
∆x2

)
∆t, if x = 10,

+ (βIXI + γIID − µII + ψCC)∆t,
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D(t+ ∆t, x)

= D(t, x) +





(
D(t,x+∆x)−D(t,x)

∆x2

)
∆t, if x = 0,(

D(t,x+∆x)−2D(t,x)+D(t,x−∆x)
∆x2

)
∆t, if 0 < x < 10,(

0− D(t,x)−D(t,x−∆x)
∆x2

)
∆t, if x = 10,

+(βDXI − γDID − µDD)∆t,

C(t+ ∆t, x)

= C(t, x) +





(
C(t,x+∆x)−C(t,x)

∆x2

)
∆t, if x = 0,(

C(t,x+∆x)−2C(t,x)+C(t,x−∆x)
∆x2

)
∆t, if 0 < x < 10,(

0− C(t,x)−C(t,x−∆x)
∆x2

)
∆t, if x = 10,

+(χDD − χCCI − µCC)∆t,

Below is a discrete approximation for the partial differential equation
model (2) after imposing a diffusion coefficient (τ) through the application
of a finite difference scheme. This approximation was used to compute the
lesion regression scenarios outlined in section (3.4):

L(t+ ∆t, x)

=





(1− τ + ψ∆x)L(t, x) + τ(L(t, x+ ∆x)− ψ∆xB), if x = 0,
(1− 2τ)L(t, x) + τ(L(t, x+ ∆x) + L(t, x−∆x)), if 0 < x < 10,
(1− τ)L(t, x) + τL(t, x−∆x), if x = 10,

+(−αLLR+ πLπXaX + ψL(B − L))∆t,

R(t+ ∆t, x)

=





(1− τ)R(t, x) + τR(t, x+ ∆x), if x = 0,
(1− 2τ)R(t, x) + τ(R(t, x+ ∆x) +R(t, x−∆x)), if 0 < x < 10,
(1− τ)R(t, x) + τR(t, x−∆x), if x = 10,

+(σ − αRLR− πRa)∆t,
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X(t+ ∆t, x)

=





(1− τ)X(t, x) + τR(t, x+ ∆x), if x = 0,
(1− 2τ)X(t, x) + τ(X(t, x+ ∆x) +X(t, x−∆x)), if 0 < x < 10,
(1− τ)X(t, x) + τX(t, x−∆x), if x = 10,

+(αXLR− βXXI − πxaX)∆t,

I(t+ ∆t, x)

=





(1− τ)I(t, x) + τI(t, x+ ∆x), if x = 0,
(1− 2τ)I(t, x) + τ(I(t, x+ ∆x) + I(t, x−∆x)), if 0 < x < 10,
(1− τ)I(t, x) + τI(t, x−∆x), if x = 10,

+(βIXI + γIID − µII + ψCC)∆t,

D(t+ ∆t, x)

=





(1− τ)D(t, x) + τD(t, x+ ∆x), if x = 0,
(1− 2τ)D(t, x) + τ(D(t, x+ ∆x) +D(t, x−∆x)), if 0 < x < 10,
(1− τ)D(t, x) + τD(t, x−∆x), if x = 10,

+(βDXI − γDID − µDD) ∆t,

C(t+ ∆t, x)

=





(1− τ)C(t, x) + τC(t, x+ ∆x), if x = 0,
(1− 2τ)C(t, x) + τ(C(t, x+ ∆x) + C(t, x−∆x)), if 0 < x < 10,
(1− τ)C(t, x) + τC(t, x−∆x), if x = 10,

+(χDD − χCCI − µCC)∆t,

17


