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Abstract

The threat of invasive species has increased with the expansion of
global transportation. In the United States, zebra mussels became a prob-
lem by the early 1990’s when they were introduced by ballast water into
Lake St. Clair in 1988. In 2007, a new deterministic discrete-time model
for zebra mussel populations was proposed by Casagrandi. We show how
this model produces periodic, stable, and chaotic population patterns. In
addition, a parametric analysis corrects some results of Casagrandi con-
cerning the effect of changes in the adult cannibalistic behavior through
filter-feeding. Finally, a new stochastic continuous-time model is pro-
posed, abstracted from the Casagrandi model and implemented via the
Gillespie algorithm.
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1 Introduction

As the world becomes a smaller place through the advent of better communi-
cation and transportation, the global transit of materials from one location to
another has become increasingly easy. Better mobility translates to higher prof-
its for major corporations and small businesses alike. That being said, the boom
in transportation has caused impacts on the environment, as well. For instance,
increased automobile emission has contributed to the air pollution problem;
and the growing dependence on automobiles has furthered urban sprawl and
the issues associated with that. Along a parallel line, transportation has had
the effect of introducing non-native species into ecosystems around the world.
It is believed that the brown rat (Rattus norvegicus) was introduced to New
Zealand by an infestation on James Cook’s ships during his circumnavigation of
the island [18, pg 191]. The Colorado potato beetle (Leptinotarsa decemlineata)
is a pest in the United Kingdom, where it is found on imported produce [3,
pg 44]; and the Common Water Hyacinth (Eichhornia crassipes) was exported
from the Amazon basin and introduced into Africa’s Lake Victoria as an orna-
mental plant [1, pg 1]. However, perhaps one of the most prominent invasive
species in the United States of America has been the zebra mussel (Dreissena
polymorpha).

1.1 The Biology/Ecology

In order to understand zebra mussel populations and to create an accurate
model, one must first understand the aspects of their biology. Ultimately, the
purpose of any biological model is to mathematically recreate those aspects and
grasp thier consequences. Without that knowledge, the model is just a set of
equations drawn from an endless heap of many. Zebra mussels originate from
the Ukrainian/Russian area of the Black Sea [16, pg 241]. The common term
“zebra mussel” comes from the dark stripes present on its shell. Biologically,
zebra mussels are freshwater bivavle mollusks, meaning that they have a shell
split in two and joined with a ligament [15, pg 327]. Their life cycle consists
of three primary stages: veliger, juvenile, and adult. Veligers are planktonic
larvae that move through the use of a ciliated organelle, known as the velum
[6, pg 1225]. The spawning period for zebra mussels is late spring or early
summer, and a single colony of mussels is capable of producing large numbers
of veligers through external fertilization [19, pg 3061]. The primary natural
dispersal mechanism for zebra mussel populations is translocation in the veliger
state resulting from water current flow; although adult mussels have been known
to travel as a result of drifting and human vectors (e.g. recreational boating) [10,
pg 248]. It is the mobility of mussel veligers that gives way to rapid dispersal
of mussels in a single watershed and what makes this species so successfully
invasive.

The juvenile stage begins right after the individual veliger settles and ends
at sexual maturity, which occurs over a period roughly equal to two years [11, pg
429]. As a juvenile, the mussels develop byssal threads, which enables them to

3



attach to substrate [6, pg 1225]. Zebra mussels do not colonize all available areas
of a habitat but instead attach themselves only to firm substrates (such as rocks,
artificial structures, and even other mussels), although it is possible for adults
to dettach and move elsewhere [19, pg 3061]. Adult female mussels are capable
of producing between 30,000 and 1,610,000 eggs depending on environmental
conditions [10, pg 254]. Fecundity also increases with body size [8, pg 23]. The
variation in fecundity rates contributes to the extreme contrast in population
levels in empirical data collected from the same location year after year [8, pg
24]. These variations are also partially due to the small survival rates from
one year to the next. For the veliger population, only around 1-5% of the
individual larva will survive; although some research has estimated even higher
mortality rates [6, pg 1227]. Juvenile and young adults have been observed to
have relatively standard survival rates; however, there is great discrepancy in
life expectancies and thus the survival rates of older adult mussels. In fact,
Karatayev reports the variation as 2-19 years, although how much of that is
actually due to methods used in determining age or rather the biology itself is
up for debate [8, pg 23]. More realistic estimates are around 4-8 years, higher
in European waters and lower in North America [11, 429]

1.2 Background Information

Zebra mussels are believed to have first come to the United States by way of
ballast water in the transatlantic cargo ships traveling the St. Lawrence Seaway
[13, pg 2290]. They were first spotted in Lake St. Clair (Michigan/Ontario) in
1988 and were observed in all of the five of the Great Lakes by the end of 1990
[19, pg 3061]. The mussels then made their way down the Mississippi River as
far as New Orleans and spread throughout much of the eastern United States,
including to inland bodies of water through human-influenced vectors (as zebra
mussels are capable of surving out of water for multiple days) [16, pg 239].
In fact, the spread of zebra mussels in North America was much more rapid
than any one had originally thought would be the case. By 1996, the zebra
mussel had invaded twenty U.S. states and two Canadian provinces, spurring
the two countries’ governments to fund a large body of research on the economic
and ecological effects of zebra mussels, although surprisingly little was done in
regards to local population dynamics [16, pgs 239-241].

Zebra mussels can have a large number of effects on an environment. Prob-
ably the biggest is biofouling. Biofouling is the unwanted accumulation of a
certian population in an ecosystem (usually aquatic) which can result in in-
creased resource competition and possible extirpation for native species. Zebra
mussels are capable of extreme cases of biofouling because of their reproduction
rates [13, pg 2291]. Once a zebra mussel population has been established in an
area, it can be near impossible to fully remove them. Their ability to attach to
almost any solid substrate increases the issue, and is ultimately the largest eco-
nomic concern regarding their invasion. Zebra mussel veligers have been known
to settle and develop colonies in water intake pipes of many industrial facilities,
including water treatment plants, electric power stations, and steel mills [16,
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pg 239-240]. Navigational buoys have sunk under the increased weight from
attached mussels [19, pg 3061]. They attach themselves to docks, piers, boats,
and other artifical structures. Wood, concrete, and even steel can all be struc-
turally damaged by prolonged colonization [19, pg 3061]. Furthermore, mussels
that wash up on the shore during a storm pose a potential hazard to beachgoers
because of their relatively sharp shells. The 1995 National Zebra Mussel Infor-
mation Clearinghouse Study reported that the 463 surveyed facilities (ranging
from power plants to fisheries to golf courses) had spent $69, 063, 780.00 on
managing zebra mussel populations; and the U.S. Fish and Wildlife Service es-
timates that the cost will reach five billion dollars by the end of 2010 in the
Great Lakes region alone [14, pg 36].

Moreover, zebra mussels can have a devastating effect on the ecosystem in
which they invade. Being filter-feeders, an adult zebra mussel can filter up to
a liter of water every day, pulling out particles as small as 0.7-1.0 µm [10, pgs
255-256]. This activity can remove large abundances of phytoplankton from the
water, greatly affecting the food web [19, pg 3061]. In addition to the phyto-
plankton, zebra mussels filter out contaminants found in the water and build up
those toxins in their system. Waterfowl and other predators who consume ze-
bra mussels also consume these toxins, resulting in sometimes devistating effects
including reduced reproduction [16, pg 240].

All of that being said, zebra mussels have done a number of things that
could be considered as positive for the ecosystems in which they invade. As
previously stated, their filtering activity results in clearer water with less toxins
and other harmful material. In fact, there is a current project underway in
Michigan that uses zebra mussels to monitor E. coli in the Clinton River [4, pg
2]. The mussels filter out the bacteria at a continuous rate and can reveal E.
coli concentrations better than just testing the water directly. Clearer water
also gives way to increased sunlight penetration, which contributes to greater
numbers of benthic animals and macrophytes [16, pg 240]. As a result, the
population of adult yellow perch (which are benthivorous fish) in Lake St. Clair
has shown a positive growth rate since the introduction of zebra mussels; while
without the mussels, yellow perch were loosing biomass [5, pg 1914].

2 Methods

A large amount of the energy put towards researching zebra mussels has dealt
with the effects of zebra mussel populations, rather than trying to understand
the populations themselves. There is an abundance of papers dedicated to the
costs associated with zebra mussels and the competition between the mussels
and native species. Thus, in an attempt to better comprehend the local pop-
ulation dynamics, this paper explores several different models. The first is a
density-dependent deterministic discrete-time model. To better understand the
subtleties of the model, a parametric study is performed and the possibility of
calculating an intrinsic growth rate for zebra mussel populations is discussed.
The second is a new stochastic model abstracted from the Gillespie algorithm
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over a randomized time field and is intended to expand upon the first. All
computational work for both models was implimented in the C programming
language [17] and Stata Data Analysis and Statistical Software [9].

2.1 Deterministic Model

The model presented first in this paper is a density-dependent deterministic
discrete-time model that was first introduced by Casagrandi in 2007, though it
is partially based on the 1954 Ricker model that exhibited the self-cannibalistic
tendencies of fish populations.

2.1.1 Equations

The model takes the following mathematical form [6, pg 1226]: gillespie algo-
rithm time exponential

n1(t + 1) = σ0exp
[−βN(t)

][f2n2(t)
2

+
f3n3(t)

2
+

f4n4(t)
2

]
(1a)

n2(t + 1) = σ1n1(t) (1b)
n3(t + 1) = σ2n2(t) (1c)
n4(t + 1) = σ3n3(t) + σ4n4(t) (1d)

The zebra mussel population is divided into four separate stages: ni(t) rep-
resents the number of zebra mussels of Stage i at time t, whereas N(t) =
n1(t) + n2(t) + n3(t) + n4(t) is the total zebra mussel population at time t.
As a consequence of the varied life expectancies of zebra mussels as explained
in Section 1.1, those mussels staged 4 and larger have been catagorized into the
same class (n4(t)). Hence, Equation (1d) promotes mussels from Stage 3 but
also retains those already in Stage 4+. In the literature, more often than not
the word “Age” will be used instead of the term “Stage” which would seem to
make sense with the yearly promotion of each grouping. However, in the field,
zebra mussels are catagorized based on observed physical characteristics; thus,
the “Stage” is considered to be more appropriate terminology. Biologically, re-
ferring to Stage 1 would be the same as referring to the juvenile population.
Stages 2, 3, and 4+ reflect successively older and larger zebra mussel groupings.
This results in a more biologically accurate model, as breaking up the adult pop-
ulation allows different parameter values to be assigned to mussels that would
realistically be performing at different rates.

The σi parameters are the survival rates as one stage is promoted to the
next every year. So, σ1 in Equation (1b) is the rate at which Stage 1 mussels
survive to Stage 2, and so on and so forth. That being said, σ0 in Equation (1a)
has a slightly deeper meaning: σ0 = σE × σV , where σE is the rate at which
eggs are fertilized by adult males and σV is the survival rate of veligers in a
low density of adult mussels. The exponential term found in the same equation
is what has been adapted from the Ricker model, meaning that this accounts
for the canabalistic tendencies found in the system as a result of filter-feeding.
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The parameter β represents the filtration rate by adult zebra mussels. The final
term in that equation can be thought of as an average population of veligers. fi

is the fecundity, or the average number of eggs released by one adult female of
Stage i. Thus, fini(t)/2 is the total number of vilegers produced by the Stage
i mussels, assuming that the gender ratio is roughly equal. Only female zebra
mussels of Stage 2 or greater can produce eggs so Stage 1 has been excluded
from this term.

Parameter Value Description
σ0 0.01 combined rate of veliger survival and birth
σ1 0.88 survival rate of Stage 1 mussels to Stage 2
σ2 0.41 survival rate of Stage 2 mussels to Stage 3
σ3 0.35 survival rate of Stage 3 mussels to Stage 4+
σ4 0.04 retention rate of Stage 4+ mussels
f2 0.24× 106 fecundity of Stage 2 female mussels
f3 0.465× 106 fecundity of Stage 3 female mussels
f4 0.795× 106 fecundity of Stage 4 female mussels
β 1.0 filtration rate of adult mussels

Table 1: The Parameter Set. Alterations made to these parameter values are
explicitely mentioned where they occur.

Using this model and the parameters found in 1 which were originally set by
Antonni [2], we have been able to reproduce the results of Casagrandi. However,
there was some difficulty in producing these graphs. In Casagrandi’s article, the
parameters used are explicitly outlined; however, the initial conditions are rather
ambiguous. From visual inspection, the graphs appear to have an initial pop-
ulation of around N(0) = 120 zebra mussels; however, after some analysis was
done using various populations and combinations of different ages, we were un-
able to produce graphs that exactly matched Casagrandi’s. Thus, these graphs
were created using the same parameter values but different initial populations
to reflect similar patterns to those found in the 2007 article. Initial conditions
have been set such that n1(0) = n2(0) = n3(0) = n4(0) = 20. Thus, N(0) = 80
is the total abundance of zebra mussels at the start of the model. This initial
condition is realistic for when a population is considered some time after already
being introduced into an area. As previously mentioned, it is common for only
a select amount of the veliger population to be first introduced because of their
mobility. Thus, an analysis exploring the outbreak of an invasive population
might have a large number of Stage 1 mussels with little or no Stage 2, 3, or
4+. However, the goal of this analysis is to understand the population dynamics
over a set period of time, rather than the initial invasion of mussels. Thus, these
initial population values are used.

It is important for a universal zebra mussel population model to be versatile
in its ability to create different behavioral patterns. Unlike many other living
things, zebra mussels can have vastly different population behaviors based on
the location of the colony, which has caused difficulty in modeling their local dy-
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namics. This variance originates mostly from environmental conditions, such as
salinity, pH, temperature fluctuations, and levels of different chemicals present
in the water [12, pg 357-358]. The three most prominant behavioral patterns are
chaotic, cyclic (of varied periods), and stable. One of this model’s key strengths
is its ability to produce all three of these patterns.
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Figure 1: Population Breakdown and Total Population - Chaotic. Parameter
set found in Table 1. Random peak height and timing.

Figure 1 corresponds to the seemingly random sequences found in empricial
data collected on zebra mussels, a pattern sometimes referred to as “chaotic
regime”. The population spikes irregularly and without warning, or in other
words the peaks of the graph can vary in height considerably and are not at
regular time intervals. The graph also exhibits the ability for the population to
lie “dormant” for some time (specifically speaking about 27 ≤ t ≤ 46, where
the population never goes above 35 mussels for almost 20 years).
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Figure 2: Population Breakdown and Total Population - Cyclic One. σ4 =
0.005. 5-year cyclic pattern, increase to a constant peak height.

Figures 2 and 3 reflect cyclic populations. Zebra mussels have been observa-
tionally shown to be periodic in different regions of the world; and as might be
expected, the periods of these observations are often different. Depending on the
parameter set, this model will exhibit not only cyclic behavior, but also cycles
of different length. Figure 2 has a period of five years. Also note the increase to
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Figure 3: Population Breakdown and Total Population - Cyclic Two. σ0 = 0.02
and σ4 = 0.06. 6-year cyclic pattern, increase to a constant peak height.

a constant peak height of just below 1,500 mussels over time. In contrast, Fig-
ure 3 has periods of six years, and levels out to a population almost twice that
found in Figure 2. Figure 4 is also noteworthy. In it, the population reaches an
equilibrium value of around 88 mussels in a relatively short period of time after
a bit of fluctuation. Zebra mussel populations have been observed at relatively
constant levels for extended periods of time. Thus, a complete model must also
be able to exhibit a stable population pattern, as the Casagrandi model does -
once again dependent on the parameter set.

0
20

40
60

80
10

0
N

um
be

r 
of

 Z
eb

ra
 M

us
se

ls

0 10 20 30
Time (Years)

Stage 1 Stage 2 Stage 3 Stage 4+

Population Breakdown

0
20

40
60

80
10

0
N

um
be

r 
of

 Z
eb

ra
 M

us
se

ls

0 10 20 30
Time (Years)

Stages 1−4+

Total Population Count

Figure 4: Population Breakdown and Total Population - Equilibrium. σ0 =
0.00001 and β = 0.01. Stable pattern, levels out to a constant population.

A final point of discussion is just how the populations evolve in this model.
A feature in all of the graphs (with the exception of the equilibrium found in
Figure 4) is that when a spike in population occurs, the resulting next few
years experience a decline in population as a direct consequence of the survival
rates from Stage (i) to Stage (i + 1). Also, there is never a sizable influx to
the population immediately after a peak because the exponential term in (1a)
is close to 0 as a result of a large N(tp), where tp is the time at which the
population peaks. Biologically speaking, the high number in total population
means for a large amount of filter-feeding. In turn, this results in a large amount
of canabalism on the veliger population and thus no increase in population even
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though the mature females will produce a vastly large number of eggs in total.
Even more interesting is why the populations spike in the first place. It is

also a direct outcome of the filtering. The total population must reach a low
enough level where the filtering has little to no effect on the veliger population’s
survival. Only then can the veligers have the hope of making it to Stage 1. Then,
as a result of high reproduction rates, the population will spike to numbers
sometimes 1,000 times or more than it was previously. All of this means that
the total population of zebra mussels in this model tends to move in a sequence
reminiscent of a wave. A grouping of mussels will move through time as the
dominant Stage from year to year until eventually enough die that a new group
can emerge, only to repeat the same pattern. When the parameter set dictates
periodic behavior, this occurs on a regular cycle. On the other hand, when the
parameters result in a chaotic pattern, this sequence is more randomized. The
only exception to this rule being when parameters allow for an equilibrium.

2.1.2 Parameter Anaylsis

Much of Section 2.1.1 was devoted to explaining the Casagrandi model and re-
viewing the aspects of the model that make it liable to local zebra mussel pop-
ulation dynamics. So, although parameter values were specified and described,
very little emphasis was given to understanding parameteric sensitivity. Thus,
further analysis will be given specifically to the σi and β values with an emphasis
on the different temporal structures.

Turing attention first towards the σi values, Casagrandi argues that only
σ0 and σ4 are of importance to the model [6, pg 1227]. Survival of Stage 1
mussels to Stage 2 (σ1), Stage 2 mussels to Stage 3 (σ2), and Stage 3 mussels
to Stage 4+ (σ3) mostly control the rate of post-peak population decline, which
is ultimately of little consequence when considering the overall pattern. The
population spikes are most sensitive to veliger survival and the retention of
Stage 4+ mussels.

Veliger survival controls whether or not the population is even able to spike
because mussels are only introduced through reproduction (as opposed to in-
cluding adult translocation). As a result of the empirically low veliger survival,
values for σ0 were constrained to 0− 5%. Retention of Stage 4+ mussels is im-
portant for two reasons. The first of which is that they are the mussels with the
highest fecundity rates and thus capable of producing the most veligers. Sec-
ondly, retention of Stage 4+ mussels varies so much from location to location.
Areas with high retention rates experience increased canabalistic effects, and
the reverse is true for areas with low retention rates. The biological variance
makes σ4 difficult to realistically bound. σ4 will be small in areas with shorter
lifespans and large in locations where mussels are known to live longer. For sake
of argument, σ0 is examined for 0− 10%. This value is more relatable to North
American populations of zebra mussels, as they are known to have shorter life
expectancies than the European colonies.

Figure 5 is the result of analysis of the graphs generated using different
σ0, σ4, and β values and can be thought of as a diluted bifurcation diagram.
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Figure 5: Multidimensional Parameter Analysis. Left to right: β = 0.1;
β = 0.5; and β = 0.9.

Parameter sets were made for every possible combination 0.0 ≤ σ0 ≤ 0.05 with
a step size of 0.005, 0.0 ≤ σ4 ≤ 0.1 with a step size of 0.01, and 0.0 ≤ β ≤ 1.0
with a step size of 0.1. The behavioral pattern was manually examined and
recorded for each parameter set; and a color scale is used to differentiate five
different population scenarios (Stable, Cyclic, Chaos, Extinction, or Growth).
This analysis produced a result simlar to that found in Casagrandi’s parameter
analysis [6, pg 1228]. In all three graphs, there are obvious banded regions.
These markings indicate blocks where diferent temporal structures occur. A
more complete bifurcation analysis would reveal the exact curves where the
behavior changes. The red line on the left is where σ0 = 0.0, meaning that none
of the veliger population survives, so extinction is the expected result.

Although it is not pictured, unbounded growth occurs where β = 0.0 and
σ0 6= 0.0. If β = 0.0, then the exponential term that accounts for filtration
and the canabalism of veligers is effectively removed from the system. This
is also a major term restricting population growth. So, the case where β =
0.0, will be omitted from further analysis. Similarly, parameter sets involving
stable populations will also be omitted as a stable population will not illustrate
population peaks by definition.

Removing the case where β = 0.0, Casagrandi contends that changing β has
little effect on the model, except for the height of the population peaks [6, pg
1226-1227]. Indeed, even a cursory analysis leads one to believe β has a direct
relation to the peak height. Figure 5 would seem to suggest something similar,
as there is little variation between the graphs with different β values. However,
further investigation argues a more subtle result. By altering β and holding all
else constant, there was a great effect on the placement and number of peaks
over a given timespan, which is of obvious importance in determining population
size at any given time and certianly important in terms of the overall patterns
present.

Analysis was made using three different parameter sets, identical to those
used in generating the graphs found in Section 2.1.1. As shown in Figures 1, 2,
and 3, two of the parameter sets produce cyclic patterns and the third produces a
chaotic pattern. Data sets mapping the total population were generated for fifty
years using each of the parameter sets with increments of 0.01 on 0.0 < β ≤ 1.0.
The times for the highest peaks were recorded for each data set and then plotted
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against their corresponding β value.
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Figure 6: Total Population Peak Times - Cyclic One. σ4 = 0.005.

Figure 6 is the resulting graph for one of the cyclic parameter sets. Indeed
the periodic nature is evident in the graph; for a single β value, the time between
each successive peak is on average the same. Probably the most salient feature
of this graph is the horizontal lines present. They argue that the top population
peaks occur at regular time intervals and for the most part occur at the same
year marks (t = 23, 28, 33, 38, 43, and 48). These results correspond with
Casagrandi’s statement, as these are where alteration of β has no effect on the
overall peak structure in terms of timing.
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Figure 7: Total Population Peak Times - Chaos. Parameter set found in Table
1.

In contrast to Figure 6, Figure 7 was generated using a parameter set for
chaotic behavior. Surprisingly enough, horizontal lines can still be found on
the graph, although distinctly less of them. The randomized “cloud” of dots in
the upper half of the figure corresponds to areas where changes in β influences
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the population peak timing. One might be led to argue that the prominent
horizontal lines (and thus identical peak structure) are a consequence of cyclic
parameters which would seem to make sense. However, Figure 8 also uses cyclic
parameters. Its pattern, although still cyclic, pushes away from that found in
Figure 6 and closer to the chaotic pattern. It has less horizontal line patterns and
more areas of randomization. Thus, similar temporal structure is not necessarily
a direct result of cyclic parameters (although the two are at least related). As
a final realization, it can be definitively concluded that β alters peak structure
more than just in terms of height.
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Figure 8: Total Population Peak Times - Cyclic Two. σ0 = 0.02 and σ4 = 0.06.

Combining the results of the β analysis and the σi analysis, Casagrandi’s
parametric study is found to be correct with regards to behavioral patterns;
however, it falls short in regards to the specifics. While the pattern is important,
a practical universal model to track zebra mussel populations with so many
different parameters must be accompanied by an analysis of how not just the
pattern changes with alterations of the parameter values but also an analysis of
how temporal structure and peak height change.

2.1.3 The Intrinsic Growth Rate

The intrinsic growth rate of a population is the measure at which the population
grows on average over an extended period of time. Note that for an equilibrium
parameter set, the growth rate is irrelevant, since the population by definition
is constant. Similarly, by definition a chaotic parameter set is too random to
have a general growth trend. Thus, when talking about the intrinsic growth
rate, reference is made to the parameter sets where the population pattern is
periodic.

The first step in attempting to determine the model’s intrinsic growth rate
is to establish upper and lower bounding functions on the graph. In this case,
the process is a little more subtly complicated than one might expect. Starting
with the original set of equations found in Section 2.1.1, sum them together to
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have an equation for N(t + 1):

N(t + 1) = σ0exp
[−βN(t)

][f2n2(t)
2

+
f3n3(t)

2
+

f4n4(t)
2

]
+

σ1n1(t) + σ2n2(t) + σ3n3(t) + σ4n4(t)

The bottom line of the right hand side of the equation (which comes from
the sum of Equations (1b), (1c), and (1d)) is the easier section to bound. First,
note that if all of the σi values were the same, then this whole term would just
be equal to σiN(t). Thus, we can bound the upper limit of this section by taking
the maximum σi value and multiplying it by N(t). Similarly, the lower bound
can be found using the minimum σi value. Thus, written mathematically:

σminN(t) ≤ σ1n1(t) + σ2n2(t) + σ3n3(t) + σ4n4(t) ≤ σmaxN(t).

Now, consider the first half of the equation (which is really just Equation
(1a)). First, factor out the 1

2 from the bracketed section with fecundities:

σ0

2
exp

[−βN(t)
][

f2n2(t) + f3n3(t) + f4n4(t)
]
.

Then, replace the ni(t) terms using Equations (1b), (1c), and (1d) evaluated at
time t (and thus expressed in terms of (t− 1)):

σ0

2
exp

[−βN(t)
][

f2σ1n1(t− 1)+ f3σ2n2(t− 1)+ f4

(
σ3n3(t− 1)+σ4n4(t− 1)

)]
.

Similarly to before, notice that if all of the fiσj terms were the same, the
equation could be expressed in terms of N(t) in the exponential term and N(t−
1) in the latter section. Thus, by taking the maximum and minimum values in
the set {f2σ1, f3σ2, f4σ3, f4σ4}, upper and lower bounds for this section are
outlined. Once again, expressed mathematically:

σ0

2
exp

[−βN(t)
]
(fσ)minN(t− 1) ≤ σ0exp

[−βN(t)
]×

[
f2n2(t)

2
+

f3n3(t)
2

+
f4n4(t)

2

]
≤ σ0

2
exp

[−βN(t)
]
(fσ)maxN(t− 1).

Now, combining the results of bounding both of the sections, the bounds for
the entire N(t + 1) equation are written:

σminN(t) +
σ0

2
exp

[−βN(t)
]
(fσ)minN(t− 1) ≤ N(t + 1)

≤ σmaxN(t) +
σ0

2
exp

[−βN(t)
]
(fσ)maxN(t− 1).

The most noteworthy thing about these bounding functions is their use of
two initial conditions; one needs to know both N(t − 1) and N(t) in order to
bound N(t + 1). In this way, the bounding equations are said to have two
levels of memory. In practice, this can generate an extra problem to deal with;
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finding one initial condition is difficult enough, let alone two. The process used
in this paper is rather simple. The algorithm employed makes use of the single
set of initial conditions given to the model and then uses the model equations
(1) to generate a second set at t = 1. Thus, for both t = 0 and t = 1, the
upper and lower bounds are equal to the function being bounded; however, for t
values greater than that, the bounds fall above and below the predicted values,
respectively.
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per/Lower Bounds - Chaos.
Parameter set found in Table 1.
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Figure 10: Total Population Up-
per/Lower Bounds - Cyclic One.
σ4 = 0.005.

After establishing the bounding functions, the first question to ask is how
well they compare to the predicted values from the model. Looking at the
Equilibrium graph in Figure 12, one might argue that they don’t bound the
population curve well at all; the bounds are well above and below the population
value. However, looking at the other three graphs in Figures 9, 10, and 11, the
bounding functions seem to almost dictate the population level which ultimately
reveals the complex sensitivity of the model.
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Figure 11: Total Population Up-
per/Lower Bounds - Cyclic Two.
σ0 = 0.005.
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Figure 12: Total Population Up-
per/Lower Bounds - Equilibrium.
σ0 = 0.00001 and β = 0.01.

In each graph all three curves exhibit population spikes at the same time,
which makes sense as to how the bounding functions were derived. What is
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remarkable is that where the population spikes, the lower bound seems to control
how high the population will initially spike; whereas the upper bound seems to
control how the population declines after the spike. In fact, if once again tp is
the time at which the population peak occurs, the lower bound at tp is the same
value as the model population for all practical purposes. Furthermore, at time
(tp + 1), the population matches the value of the upper bound. This is most
obvious in the Cyclic Two graph in Figure 11.

Unfortunately, the ultimate conclustion after finding the bounding functions
is that there is no intrinsic growth rate for zebra mussel populations (at least
in this model) because of the “boom and bust” dynamics present. Even with
the bounding functions, the patterns are simply too periodic; and with this
periodicity, an intrinsic growth rate is simply impossible to calculate.

2.2 Stochastic Model

When examining the literature, there were many papers detailing the effects
of zebra mussels; however, very few trying to understand the sometimes cyclic,
sometimes chaotic, and sometimes stable patterns so present in the empirical
data. Casagrandi did such with a discrete deterministic model; however his
article did not directly outline a stochastic model to produce similar results.
Thus, the next model presented in this paper attempts to fill that void. It is
a stochastic model over a randomized time field and is fashioned loosely from
the deterministic model in Section 2.1.1, although it uses an algorithm adapted
from Gillespie [7].

2.2.1 The Algorithm

The algorithm is designed to correlate with the zebra mussel life cycle. Using the
same groupings as the deterministic model, it starts with an initial population
and outlines a series of possible events that could happen to that population
and accounts for each of these events. Those possibilities are as follows: (1)
maturation of a veliger; (2) death of a veliger; (3) promotion of an Stage 1
mussel to Stage 2; (4) death of an Stage 1 mussel; (5) promotion of an Stage 2
mussel to Stage 3; (6) death of an Stage 2 mussel; (7) promotion of an Stage 3
mussel to Stage 4+; (8) death of an Stage 3 mussel; (9) survival of an Stage 4+
mussel; (10) death of an Stage 4+ mussel. Each one of these events happens with
a different probability (as it is reasonable to assume that some events are more
likely to happen than others). The model assumes that events won’t happen
simultaneously. For simplification purposes, events (1) and (2) will be absorbed
into what will account for the annual spawning of the population; and we will
only allow events (3) - (10) to occur throughout the year.

According to Gillespie, there are two things to generate when looking at a
stochastic model. The first is when the next event will occur, and the second
is what that event will be. Determining the time is done through generation
of a pseudorandom number between 0 and 1 using an exponential distribution,
scaled to the probability of the events. The result is considered ∆t and added
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to the previous t value, starting with t = 0. This is then iterated for the next
event possibility over and over again until a maximum value of t is attained.

Secondly, the algorithm must randomly determine which event happens.
This is done using the probability of each event in relation to the other events.
These probabilities come from the σi values in the Casagrandi model. The
probability a Stage i zebra mussel will be promoted/survive is equal to σi,
whereas the probability that it will die is equal to (1− σi). These numbers are
then scaled down such that their values add up to 1 and then laid out next to
each other on a theoretical number line. Once again, a pseudorandom number
between 0 and 1 is generated and compared to the number line. The number
generated will fall in the range of probability for a given event, and that event
is what is determined to happen. Finally, the population change is marked and
the process is iterated for each generated t value.

So now the question becomes how the spawning period should be dealt with.
The model was coded such that it would determine whenever the time passed an
integer value of time, which is defined to be the time of year spawning occurs.
When this is the case, the model adds

σ0exp
[−βN(t)

][f2n2(t)
2

+
f3n3(t)

2
+

f4n4(t)
2

]

to the n1 class. This results in correctly modeling the spawning period once
every year. It is worthwhile to note that events (1) and (2) have been factored
into this process as they were in the deterministic model, rather than being
dealt with explicitly as events (3)-(10) have been.

2.2.2 The Trials

Monte Carlo Trials were run in an attempt to gather further information. As
with the deterministic model, initial conditions were set at n1(0) = n2(0) =
n3(0) = n4(0) = 20. The same parameter sets as in the deterministic model were
also used in the stochastic case. This allows for comparisons to be made between
the two models, as well as the examination of the three different behavioral
patterns: chaotic, cycilc (of varied periods), and stable. Although many more
trials were run, a set of ten random trials were chosen and then plotted for
each parameter set. In addition, the population number of these ten trials
were averaged together at every integer value of time; and then that line was
also plotted in the graph to offer an overall view of the population dynamics.
When examining the graphs produced using these methods, it is important to
remember the random and varying nature of a stochastic process.

Looking at the graph with a chaotic parameter set (found in Figure 13), one
will note that there is a great deal of variance in the individual trials. This would
make sense, as the nature of chaos is to have randomized and unpredictable
population spikes to varying heights. In fact, this result is parallel to that found
in the deterministic model. The average line follows the trends found in all of
the other lines, spiking whenever there is a spike no matter which individual
curve is spiking.
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When looking at graphs generated with cyclic parameters, there are two
specific points of interest. The first is similar peak height, and the second is
groupings of peaks in the individual trials. The Cyclic One case found in Figure
14 better exemplifies this than the Cyclic Two case found in Figure 15. In the
Cyclic One graph, there is noticable bunching of peaks in every case where the
average line spikes. This would argue that the each of the Monte Carlo Trials
is producing similar temporal patterns. In addition, the population peaks rise
to roughly the same value every time (with of course some error by the very
nature of a series of stochastic processes). In the Cyclic Two graph, these
characteristics are slightly less evident, although still present.
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Figure 13: Monte Carlo Trials -
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ble 1.
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Figure 14: Monte Carlo Trials -
Cyclic One. σ4 = 0.005.

Finally, the Equilibrium graph in Figure 16 is of great interest. Note that
the individual trials seem to fluctuate a substantial amount. Although when
the average curve is examined, it can be seen that this fluctuation decreases
considerably. In fact, in this set of trials, the average curve seems to account for
a population around 90 zebra mussels with fluctuations of around 20 mussels,
which closely matches the value in the deterministic model.
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Figure 15: Monte Carlo Trials -
Cyclic Two. σ0 = 0.02 and σ4 =
0.06.
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Similar results to these were found when more and more Monte Carlo Trials
were performed with each parameter set. That being said, there was of course
some dissimilarity in all of the trials, as would be expected. In some of the
generated trials, populations were led to extinction which is a valid biological
outcome. However, this is something that cannot be acheived with the determin-
istic model using the given parameter sets. The other large observed variation
had to do with the cyclic trials. While they all seemed to follow some sort of
loose pattern, in many of the trials this sequence was less defined than might
have been hoped for. Looking at the stochastic cylic graphs in comparison to
those of the deterministic model, it is unmistakable that the temporal patterns
are less regularly cyclic. However, it would be easy to argue that the stochastic
model simply reflects a more natural sequence.

3 Conclusion

Casagrandi’s model successfully generates chaotic, cyclic (of varied periods),
and stable local population dynamics for zebra mussel colonies. Depending on
the parameter set, it is able to produce realistic population levels and account
for the cannabalistic nature of the filter-feeding process. The parametric study
found in this paper validates the work of Casagrandi regarding the σi values and
corrects the work done concerning β. Moreover, although an intrinsic growth
rate cannot be found because of the periodicity, the model is definitely creditable
when the boom and bust dynamics of the empirical data is considered.

The stochastic model abstracted from Casagrandi and the Gillespie algo-
rithm explores zebra mussel populations in what may be considered a more
natural sense than the deterministic model. Its use of a randomized field for
time and a random selection process for events better simulates reality. The
relative success of iterated trials reinforces this notion. Additionally, it helps to
fill a void in the literature with regards to modeling local dynamics.

Further work could be done on this topic and specifically with the work
presented in this paper. It is possible to abstract the model to include a spatial
component in order to predict the location of individual zebra mussels and
mussel buildup within an ecosystem; however, local environmental dimensions
would need to be known. It is also possible to expand this study to include patch-
to-patch dynamics in order to model the spread of zebra mussel populations
over a single watershed, or even over larger areas of land - for instance the
North American continent. However, the lack of these components does little to
affect the validity of this model, as local population dynamics must be formally
understood before such attempts can even be made.
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