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Abstract. Fishery management is the consideration of the ecological effects of harvesting.

Fisherman work to provide fish for a growing human population but because of this some

fish populations have been dangerously declining. It is important to balance ecological

and economic needs. In this paper we investigate various deterministic models of fishery

populations. A simple logistic model, a skewed logistic model with a quadratic term, and a

model that demonstrates the Allee effect have all been considered with a constant harvest

rate as well as time dependent havesting. Optimization and numerical calculations were

used to determine the harvest rate that produces maximum yield under different population

density scenerios.
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1. Introduction: A Brief Outline

Fishery management is the balance between harvesting and its ecological implications. Worldwide,

fish populations are in various states; some are healthy and some are depleated due to environmental

and human factors. The population conditions greatly impact the dynamics of the system. In fishery

management, it is important to fish in such a way that a species is sustainable and not in danger

of becoming endangered or going extinct. We do not want to over harvest small fish populations.

The key idea in our study was implementing different fishing strategies to maximize catch in a

sustainable manner. We have construted three models to examine how harvest in such a way.

Species throughout the oceans currently have different population sizes; there are some popula-

tions above equilibrium and some below. These factors should be taken into consideration when

constructing a harvest strategy. We have investigated numerous populaton conditions in working

through our models to do so. Questions of interest included: how far can we harvest before putting

a population that is currently healthy in danger? Can we still harvest populations that are a low

population density? If so, what is the best way to harvest to maximize yield? We have answered

these questions to find ways to make fisheries more efficient.

Thus given the rate of change of a fish population dn
dt where n(t) is population density, we are

interested in maximizing yield without hurting the population. This important in commerical

fishing for two reasons: i) economically we want the greatest catch to supply the demand for fish

thus we maximize yield. Furthermore ii) ecologically, we do not want to deplete the population to

keep diversity in the oceans and allow for fish to be harvested in the future. We have represented

population density with n > 0, harvest rate 0 ≤ f < 1, and yield Y = fn.



2. Background

The three models worked with include a simple logistic model, a skewed logistic model with a

quadratic term, and a model with the Allee effect. Previous work has done greatly with a logistic

model for fish populations

(1)
dn

dt
= rn

(
1− n

K

)
− qEn

where r is the intrisic population growth rate and is constant , K is carrying capacity of the

environment without fishing, and n is population size [1]. Furthermore the harvest rate is qEn the

product a constant that measures catchability q, effort E, and population size. The value qE is

called fishing mortality [1].

Then by setting (1) equal to zero, there are two equilibria. These occur when the growth rate of

the population is equivalent to the harvest rate ie. rn
(
1− n

K

)
= qEn. First there is the equilibria

(2) n∗ = K

(
1− qE

r

)
the other is extinction where the fish population has been depleated. These equilibria are seen

in Figure 1. When fishing mortality is small (2) is stable; if the population increases past n∗,

harvest rate is greater than growth rate, the stock decreases back to equilibrium. If the population

decreases past n∗, harvest is less than growth, the population increases to n∗. In this case, since

the equilibrium defined in (2) is stable it is sustainable, then in turn extinction is unstable.

Consequently, as fishing mortality increases the equilibrium (2) decreases and shifts to the left

(Figure 1). Eventually, for large enough values of fishing mortality, and n∗ has gone far enough to

the left that harvest exceeds growth for all positive population levels. Then n∗ = 0 is the stable

equilibrium.

Because the goal is to maximize yield, equilibrium (2) is considered. Thus the equation for sus-

tainable yield is

Y = qEn∗ = qEK

(
1− qE

r

)
.



Figure 1. Equilibrium for our simplified logistic model which graphs intrinsic
growth n(1−n) and harvest fn for various 0 < f < 1. Intersection points represent
the equilibrium n∗ where dn

dt = 0.

Suppose that catchability is fixed, since it is a constant, then increased fishing effort will increase

sustainable yield - up to a point. Then maximum sustainable yield (MSY) occurs when

dY

dE
= qK

(
1− 2qE

r

)
= 0

which by solving gives the correspoinding optimal level of effort

EMSY =
r

2q

and morever maximum sustainable yield

MSY =
rK

4
.

This model is simplified and we have done further research by varying harvest rate to maximize

yield for populations that are not at equilibrium. We have also constructed other models and done

similar processes using these models.

3. Methods: Solving our Models

In all three models (simple logistic, skewed, and Allee) we first considered the population density

n∗, harvest rate f∗, and maximum yield



Y ∗ = f∗n∗ at equilibrium. Note that since the population is at equilibrium, this is a sustainable

way to harvest fish because the population is not endanger of being depleated. This is one possible

fishing strategy that would sustain the population giving us a possible solution to the ecological

problem.

However, since the key is to economically build up the commerical fishing industry, we investigated

two main questions: i) current population levels are not necessarily at equilibrim; what is the best

strategy to harvest under such a situation? ii) Population dynamics cannot always be represented by

a simple logistic model such as the on [1] used so we constructed other population models; the skewed

logistic model and Allee effect model. Furthermore under these models we investigated finding the

best strategy when we incorperate the skew or Allee effect. We used optimization processes to find

the constant harvest rate that maximizes yield over time T by taking the derivative of yield with

respect to harvest rate. This is a partial derivative since yield is a function of population size n

and harvest rate f where n is a function of time t and f . Since the fish catch of a given year is

Y = fn, then the yield function over time T is defined as

Y (n, f, t) :=

∫ T

0
f(t)n(t, f)dt.

This boiled down to an implicit formula that can be used to numerically calculate n(t) as well as

the optimum f that maximizes Y . This calculation was done for the Allee effect model and the

skewed logistic model (Allee model with a = 0).

We then used MATLAB [2] to do our numerical calculations and determine the optimum harvest

rate that maximizes yield all three models without using our implicit relationships. The MATLAB

[2] coding used ODE 45 to to find the solution n(t) to the differential equation dn
dt . Then this code

used trial and error processes on 0 < f < 1 to find the harvest rate that yields maximum catch by

finding the zeroes of dY
df . This produced plots of yield as a function of harvest rate.

Additionally, we constructed a two stage harvesting which model step function and compared this

strategy to the equilibrium harvesting and constant harvesting in terms of yield. This is the basis

of our step function; suppose we want to consider the fish population over time T , let ft be defined



as:

(3) f(t) =


f1, t ∈ [0, T2 ]

f2, t ∈ (T2 , T ]

where f1 6= f2 ≥ 0 are constant rates of fishing. This means we first harvest at a rate of f1

and then f2 so our population density n depends on time t as well as harvest rates f1 and f2 ie.

n = n(t; f1, f2).

We examined our three models under this time dependent harvest rate and compared our possible

yields to a constant harvest rate. This was done for initial conditions of different population values.

The initial conditions of the fishery population are very important when determining harvest rates.

Let n(0) = n0 be the initial population density. We are interested in how harvest strategies that

increase the average maximum yield depend on the initial population so we have varied initial

conditions to understand how maximum harvest rate depends on these conditions.

4. Results

4.1. A Simple Logistic Model. We began our research with a single stage simple logistic model

(4)
dn

dt
= n(1− n)− fn

where n is the population density and f is fishing rate.

By solving (4) at equilibrium (ie. dn
dt = 0) we have the solution n∗ = 1 − f∗ and Y ∗ = f∗(1 − f∗)

and moreover n∗ = 1
2 , f∗ = 1

2 , Y ∗ = 1
4 (Figure 2). This agrees with the calculations done on the

logsitic model as previously described by Kot [1].

We then consider solutions away from equilibrium that will still sustain the population. We used

MATLAB [2] to find the harvest rate that maximizes yield over time of T = 5, 10, 15, 20 units and

plotted yield as a function of harvest (Figure 4). We also found yield as a function of harvest for

various initial conditions n0 = 1, 2, 3 to determine how the initial conditions impact the population

dynamics (Figure 5).



Figure 2. Solution n(t) of simple logistic differential equation over time t with
equilibrium value n∗ = 1

2 .

Figure 3. Plot of yield as a function of harvest rate f over T = 5, 10, 15, 20.



Figure 4. Plot of yield as a function of harvest rate f for initial populations of
n0 = 1, 2, 3 over time T = 10.

4.2. A Skewed Logistic Model. To factor in a penalty on reproduction, we first used the fol-

lowing model

dn

dt
= n2(1− n)− fn

so we get f∗ = −(n∗)2 + n∗ and the yield function

Y ∗ = −(n∗)3 + (n∗)2

which once solved gives the equilibrium population density n∗ = 2
3 , harvest rate f∗ = 2

9 , and yield

Y ∗ = 4
27 (Figure 5).

Now we investigated sustainable solutions that maximize yield; we determined the optimum harvest

rate that maximizes yield over time of T = 5, 10, 15, 20 units and plotted yield as a function of

harvest (Figure 6). We repeated this process for various initial conditions n0 = 1, 2, 3 to determine

how the initial conditions impact the population dynamics (Figure 7).



Figure 5. Solution n(t) of skewed logistic model dn
dt = n2(1− n)− fn with equi-

librium population density n∗ = 2
3 and harvest rate f∗ = 2

9 .

Figure 6. Yield as a function of harvest f for the skewed logistic model over time
T = 5, 10, 15, 20.



Figure 7. Yield as a function of harvest for initial population sizes n0 = 1, 2, 3
over time T = 10.

4.3. A Model with the Allee Effect. Let a denote the Allee effect where 0 < a < 1. An Allee

effect occurs when there is a positive correlation between population density and reproductive

rate. This happens because it is more difficult for the fish to find mates. We have modeled this

phenomenon as follows

dn

dt
= n(n− a)(1− n)− fn.

The added paramater 0 < a < 1 vastly changes the population density over time (Figure 8). Based

on the differential equation, at equilibrium we have

0 = (n∗)2 + (1 + a)n∗ − (f∗ + a)

and solving this with the quadratic formula we get the equilibrium population density of

n∗ =
−1− a±

√
a2 + 6a+ 4f∗ + 1

2
.

This means that there are two equilibria, n∗1 and n∗2 (Figure 9).



Now let us consider the plus case where n∗1 =
−1−a+

√
a2+6a+4f∗+1
2 . Then by means of implicit

differentiation and optimization we get

f∗1 =
1

9

[
−1− 8a− a2 +

√
a4 + 7a3 + 12a2 + 7a+ 1

]
Y ∗
1 = − 1

18

[
1 + a(8 + a)−

√
(1 + a)2(1 + 5a+ a2)

]
×
[
−1− a+

√
1 + 6a+ a2 + 4f∗

]
.

This solution is unstable because when small disturbances that change the population n the pop-

ulation goes extinct rather than returning to the equilibrium n∗1.

For the minus case, ie. n∗2 =
−1−a−

√
a2+6a+4f∗+1
2 , we use a parallel argument and get another

equilibrium with the following solution

n∗2 =
−1− a−

√
a2 + 6a+ 4f + 1

2

f∗2 =
1

9

[
−1− 8a− a2 −

√
a4 + 7a3 + 1a2 + 7a+ 1

]
Y ∗
2 =

1

18

[
1 + 8a+ a2 +

√
(1 + a)2(1 + 5a+ a2)

]
×
[
1 + a+

√
1 + 6a+ a2 + 4f

]
.

This solution is stable since after small disturbances the population density returns to equilibrium

n∗2.

We then did the calculations to determine the implicit relationship between n(t) and the optimum

harvest rate f that maximizes yield in a sustainable manner; our calculations follow

dn

dt
= n(n− a)(1− n)− fn

Then we determined

(5)
dn
dt

n(t)[(n− a)(n− 1) + f ]
= −1

Based on the differential equation, we require f <
(
1−a
2

)2
so the population does not decrease to

extinction. Then

(n− a)(n− a) + f =

(
n−

(
1 + a

2

))2

−

((
1− a

2

)2

− f

)

= (n− α(f))(n− β(f))



with α(f) := 1+a
2 +

√(
1−a
2

)2 − f > 0 and β(f) := 1+a
2 −

√(
1−a
2

)2 − f > 0.

We split this up using partial fractions to get

1

n(n− α)(n− β)
=
A

n
+

B

n− α
+

C

n− β

with A = 1
αβ , B = −1

α(β−α) and C = 1
β(β−α) . Since fish yield over time T is

Y =

∫ T

0
fn(t, f)dt

we want to find dY
df to maximize yield. So we have

(6)
d

df
Y =

∫ T

0
[n(t, f) + f∂fn(t, f)] dt = 0

and calculated ∂fn(t, f) from the differential equation (5). We integrated to determine the following

implicit relationship

−T = −
∫ T

0
dt = A log(n)+B log(n−α)+C log(n−β)−[A log(n0) +B log(n0 − α) + C log(n0 − β)]

and defined F(n((t, f), f)) := A log(n) + B log(n − α) + C log(n − β). Then the implicit formula

arose

(7) F(n) = F(n0)− T

so we used differentiated (7) with respect to f to find ∂fn and have

(8)
d

df
F(n(t, f), t)) = F,n (n(t, f))∂fn(t, f) + F,f (n(t, f), f)

with F,n (n, f) := ∂nF(n, f) and F,f (n, f) := ∂fF(n, f) where n is treated as a variable independent

of f . Then we solved d
df F(n(t, f), t)) = 0 (8) to get ∂fn so we have

∂fn =
F,f (n0, f)− F,f (n(t, f), f)

F,n (n(t, f), f)
.

We can plug this back into the yield differential equation (6) and find the optimal harvest rate that

maximizes yield. Thus we have an algorithim to calculate the optimum harvest rate.



Similiarly we an do this numerically in MATLAB [2]. We considered the Allee effect parameter

a = 0.1; as 0 < a < 1 increases there is more penalty on reproduction. From the differential equation

with a = 0.1, we determined sustainable population density solutions away from equilibrium and

then found the harvest rate that maximizes yield over time of T = 5, 10, 15, 20 units (Figure 10).

We also found the yield function for various initial conditions n0 = 1, 2, 3 to determine how the

initial conditions impact the population dynamics (Figure 11).

Figure 8. Population density solution to the Allee model differential equation
dn
dt = n(n − a)(1 − n) − fn for Allee effect a = 0.1 (pink), a = 0.3 (red), a = 0.5
(orange), a = 0.7 (green), and a = 0.9 (blue) for harvest rate f = 0.1.

Figure 9. Plot of the unstable equilibrium n∗1 and the stable n∗2 equilibrium with
harvest rate f .



Figure 10. Yield as a function of harvest for a = 0.1 over time T = 5, 10, 15, 20.
Initial population size of n0 = 1.

Figure 11. Yield for various initial conditions n0 = 1, 2, 3 over time T = 10 with
Allee effect parameter a = 0.1.

4.4. A Two Stage Harvesting Strategy. Recall the two stage harvesting strategy (9)

(9) f(t) =


f1 t ∈ [0, T2

f2 t ∈ (T2 , T ]



By using numerical solving methods in Mathematica we found that this two stage harvesting

strategy will increase yield in populations with initial conditions below the stable equilibrium.

This was done with various values for f1 and f2.

5. Analysis

In all three models, when the intial population is below the stable equilibrium, time dependent

harvesting strategies increase the maximum average yield (ie. number of fish per time). This

means that unhealthy populations can still be fished while still sustaining the population size, and

we can do so in a manner that increases yield. If the population is initially above the equilibrium

value then there is no difference between constant and time dependent harvesting strategies.

The model used to demonstrate fishery population growth impacts the yield of fish caught. This

is shown in our various plots of yield vs. harvest rate. Furthermore our models have different

optimum harvest rates; the model used impacts the population and harvesting dynamics greatly.

A simple logistic model does not penalize reproduction for low population levels. In theory, maxi-

mum yield could be obtained by waiting for the population to reach carrying capacity and imple-

menting harvesting strategies. To include a reproductive penalty the skewed logistic model uses a

square term. Further penalty is incorportated through the model exhibiting the Allee effect. When

the Allee parameter increases the yield decreases which is demonstrated through our Matlab plots.

Now let us consider the model exhibiting the Allee effect. It is important to note that this model

has two equilibria, one unstable n∗1 and one stable n∗2 with n∗1 < n∗2. By examining the differential

equation dn
dt we see that if a population is harvested too aggressively with f ≥ (1+a2 )2 then as

t→∞ the population will go extinct ie. n(t) = 0. This means we only want to catch fish at a rate

f < (1+a2 )2.

Then given f < (1+a2 )2 to keep the population from going extinct, we can then determine the

smallest possible population density that will not cause the population to go extinct. When n0 < n∗1

then as t → ∞ the population density decreases to zero; however when n0 > n∗1 the population



increases to the stable equilibrium of n∗2 so the initial population size must be greater than the

unstable equilibrium n∗1 before we begin harvesting, if not the population goes extinct.

In fishery management, it is important to determine the maximum rate at which fish can be

harvested given a certain population so given a fish population with current population n0 then we

want to find the maximum harvest rate that does not kill off the population. If dn
dt < 0 then the

population will go extinct. This means if f > (n0−a)(1−n0) then as time increases n(t) decreases

to zero so the population moves towards extinction. If f ≤ (n0 − a)(1− n0) then the population is

sustainable.

6. Discussion & Conclusion

The economic and ecological dilemma of how to best catch fish plays a major role in fishery

management. This research has given a method of finding the optimal harvest rate that maximizes

yield given a fish population. Further studies include examining other harvesting strategies. The

general case for a time dependent model would be any continuous function f(t); however this would

logistically be difficult to implement. Fisherman are not continually fishing and in the findustry

the concern is annual yield, so the logical choice is to use a constant harvest rate over various time

steps. We could extend our two step harvesting function to three, four, or finitely many steps and

see whether this would further increase yield in populations below the stable equilibrium.

The simple logistic, skewed logistic, and Allee effect models are based on a simplified single stage

fish population. In some species the growth rate is strongly affected by the age of an individual

in the population. If this were the case, we could extend our models to a multistage model such

as a two stage model that considers juvenille and adult fish. Furthermore the models used in

this project use the intrinsic growth rate as the only growth parameter. Other population models

incorporate life history strategies and use parameters such as birth, death, fecundity, reproductive,

and maturation rates. These rates all affect the overall intrinsic growth rate of the population and

could be implemented to construct models for specific species. This would be beneficial because

fisherman are interested in harvesting species that are in high economic demand.
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