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Abstract. The p-adic number system is pertinent to many fields, including cryp-
tography, and many of these applications naturally rely on solving systems of
polynomials over the p-adics. The question of whether, in general, such a poly-
nomial system has a root over Qp – and whether this can be verified algorith-
mically – is therefore of practical and theoretical importance. Some general
problems in the search for p-adic polynomial roots are discussed, as are some
results on the existence and computability of p-adic roots.

Definition 1. For an integer a and a prime p, let ordpa be the highest natural
number k such that pk divides a. (For example, ord5400 = 2.) For a rational
number a/b, define |a/b|p = pordpb−ordpa. Note that | · |p is independent the rational
number’s representation. If we define dp : Q2 → Q by dp(x, y) = |x − y|p, d defines
a metric on Q. We define Qp to be the Cauchy sequence completion of Q with
respect to dp.

We call Qp the p-adic numbers. The usual operations + and · on Q can be ex-
tended to Qp in a natural way using Cauchy sequences; thus, the p-adic numbers
form a field, with the rational numbers as a subfield. The definition of these oper-
ations leads naturally to the definition of polynomials over Qp, and the question of
their solubility.

The first non-trivial way to simplify this question is to reduce a system of poly-
nomials to a single polynomial equation with the same zero set. It is easy to see
how this can be done over R or Q: given a system of polynomials { fi}ni=1, the as-
sociated polynomial g = Σn

i=1 f 2
i has a root at a point x0 exactly when all the fi

have a root there as well. Sufficiency is true over any polynomial ring, but neces-
sity follows from the ordering on the reals and rationals – each term in the sum
defining g is a square and therefore nonnegative; and a nonnegative sum equals
zero only when all the terms are zero. One of the key differences between Qp and
R or Q is the lack of any such ordering. (For example, as we will see later, Q5
contains square root of −1, which precludes the possibility of it being an ordered
field.) Thus, that particular trick cannot be transferred to the p-adics – however,
other techniques do exist that, while increasing the degree of the equations, reduce
polynomial systems over Qp to a single equation.

Another key difference between R and Qp is the topology. Over R, the topology
of algebraic varieties can be described in terms of the number of connected com-
ponents: for example, the zero set of the polynomial x2 + y2 − 1 is the unit circle,
which consists of one connected component, while the zero set of the polynomial
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x2 − y2 − 1 is a hyperbola with two branches and therefore has two connected com-
ponents. Over the p-adics, however, the only nonempty connected sets are those
consisting of a single point. Thus, the number of connected components of an
algebraic variety over Qp is just its cardinality, which contains less information.

How, then, can we characterize the complexity of a polynomial equation over
Qp? Other than the degree, there are two ways: we can consider the number of
terms in the polynomial, and we can consider the number of variables those terms
are in. If a polynomial is in n variables and has m terms, we say it is an n-variate
m-nomial, and we denote the set of such polynomials by Fn,m. Some n-variate m-
nomials, however, are effectively even simpler. For example, take the case f (x, y) =

4 + 2x10y4 + x15y6; then f ∈ F2,3. However, If we take z = x5y2, then f becomes
4 + 2z2 + z3; to find the roots of f , we need only find the roots z0 of the above
trinomial in z; the roots of f are then given by elements of the variety xy = z0.
Thus, we have reduced f from a polynomial in two variables to one in one variable.
In general, we can make such a reduction if the convex hull of the support of f (that
is, the set of exponent vectors in Rn) defines an n-dimensional figure; in the case of
f above, the support lied on a line segment, which is one-dimensional in the two-
dimensional space of exponent vectors, and therefore was dishonest. We denote
the set of honest n-variate m-nomials by F ∗n,m.

We now move to the question of how to determine the roots of an honest poly-
nomial equation over Qp. We begin with a theorem.

Theorem 1 (Hensel’s Lemma). Let f ∈ F1,n, and suppose we have x ∈ Qp such
that:

• f (x) ≡ 0 mod p and
• f ′(x) . 0 mod p.

Then there exists x0 ∈ Qp such that:
• f (x0) = 0, and
• x0 ≡ x mod p

For example, over Q5, consider the polynomial g(x) = x2 + 1. g(2) = 5 ≡
0 mod 5, and g′(2) = 4 . 0 mod 5, so there exists a square root of −1 in Q5.

Hensel’s Lemma gives a simple criterion for determining if an approximate root
of a p-adic polynomial can be refined to a true root. The proof relies on a p-adic
analog of Newton’s method, which gives a simple algorithmic way to calculate a
root given a suitable initial guess via p-adic expansions. It can also be applied to
obtain more general results, among which is the following theorem.

Theorem 2 (Birch and McCann). Given a polynomial f in any number of variables
over Qp, there exists an integer D( f ) such that if for some x we have

| f (x)|p < |D( f )|p
then we can refine x to a true root of f . Moreover, we can calculate D( f ) according
to a formula.

Thus, determining whether a polynomial has a root over Qp can be done in finite
time; we only need check for roots over Z/pRZ where pR > |D( f )|−1

p . However, by
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this method, doing so is almost always impossible in practice. The effective “size”
associated with calculating L(D( f )) is bounded by:

L(D( f )) < (2ndL( f ))(2d)4n
n!

where n is the number of variables and d is the degree. The size of D( f ) can be
up to quadruply exponential in the number of variables, and thus for multivariate
cases this method can be extremely inefficient. In the case of polynomials in F ∗n,n+1,
however, there are better methods.

Theorem 3 (Avendano, Ibrahim, Rojas, Rusek). For a fixed prime p, finding a
root to a function in F1,3 is NP. Furthermore, allowing p to vary, finding roots for
almost all polynomials in one variable with integer coefficients is NP, as it is for⋃

n F
∗

n,n+1.

This means that , rather than the quadruply exponential bounds in n on finding
a root of a p-adic polynomial provided by Birch and McCann, the complexity is at
worst exponential for honest n-variate (n + 1)-nomials and univariate trinomials.
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