
Algorithmic Algebraic Geometry REU at

Texas A&M: Coamoeba Project Writeup

Jeff Sommars

October 26, 2011

Abstract

For my project as part of the Texas A&M NSF sponsored Research

Experience for Undergraduates in Mathematics, I chose to work with

coamoebae. Coamoebae were defined for the first time within the past

ten years and since then, much fruitful research has been done on them.

Two years ago, Lisa Nilsson and Mikael Passare wrote a paper that care-

fully describes an algorithm for drawing specific cases of two dimensional

coamoebae. I developed a program in Sage that takes an A matrix as

input from a user and returns the corresponding coamoeba, with several

options for ways the user can adapt the coamoeba graph returned. This

program has the potential to aid future mathematical research that seeks

to gain new insight into coamoebae.

1 Nilsson and Passare’s Algorithm

Nilsson and Passare cowrote a paper to find the coamoeba of an A-discriminant.
They ingeniously developed a straightforward algorithm that requires relatively
few steps to finish constructing the polynomial’s corresponding coamoeba. From
an A matrix input, the algorithm starts by creating a related B matrix through
the use of a Gale transform; immediately after its creation, the B matrix is
adjusted. Calculate βj for each row vector bj in the B matrix where βj =
−bj1/bj2. If it is necessary, reorder the bj as follows:

∞ > β1 ≥ β2 ≥ . . . ≥ βN ≥ (−)∞ .

with β1 as the top row, β2 as the second row and so on.
Using this new B matrix, find the Horn-Kapranov parameterization of the

B matrix. Though sometimes defined using partial derivatives, an equivalent
way to define it is simply by using the formula below and the rows of the B
matrix.

Ψ[t1 : t2] =
(

∏

j=1,2,...,N

< bj , t >
bj1 ,

∏

j=1,2,...,N

< bj , t >
bj2

)

Once parameterized, pick a value of t greater than the greatest bj or smaller
than the smallest bj and input this t into the Horn-Kapranov parameterization.
The crucial information that must be taken is the sign of the ordered pair that
this produces. There are four distinct possibilities: (+,+), (+,−), (−,+) and

1



(−,−). Each one corresponds to a starting point p0 of the coamoeba: (0, 0),
(0, π), (π, 0) and (π, π) respectively.

Next, take π times the row vectors of the B matrix and connect them tip
to tail, starting at the p0 found from the Horn-Kapranov parameterization.
Though one can start with any row in the B matrix, what is important is that
the next vector taken is always one row below the most recently drawn vector,
with β1 considered to be “directly below” βN . After each row vector has been
drawn, the last line segment drawn will always connect back to p0, though it
is quite possible that the polygon drawn will be complex rather than simple.
To finish the algorithm, do exactly as before, but instead of multiplying by π,
multiply each of the row vectors by −π. The drawing that results from this
process is the principle coamoeba, which consists of two distinct cycles, Γ+ (the
first cycle drawn) and Γ− (the second cycle).

Nilsson and Passare do a great job rigorously proving each aspect of this
algorithm, so I will not take time to address that here (see [1]). Instead, I will
remark on a specific challenge that I experienced when coding an implementa-
tion of this algorithm.

2 Algorithm Implementation

If each principle coamoeba were a simple polygon that did not intersect any
other coamoeba, this project would have taken me two days of programming to
complete. However, for nearly every non-trivial A-discriminant, the coamoeba
falls into at least one of three categories:

1. The coamoeba drawn in one fundamental domain overlaps a coamoeba
drawn in another fundamental domain.

2. The cycle Γ+ of the principle coamoeba overlaps the cycle Γ− of the prin-
ciple coamoeba.

3. The cycle Γ+ overlaps itself and/or Γ− overlaps itself.

For the program to draw the coamoeba in a fundamental domain, it must deal
with each of these cases, or it will fail to shade each section of the coamoeba
properly. There are a variety of ways that all of these problems can be dealt
with, some easier to program than others. I chose a way to implement the
algorithm that is without question inefficient, but it is a way that can easily be
seen to correct all possible errors.

I start by constructing the principle coamoeba and finding the x value and
y value of greatest magnitude that are reached by it. I take the absolute value
of each of these values and add them to themselves mod(2π); call these xmax

and ymax. I then take each ordered pair

(−xmax,−ymax), (−xmax + 2π,−ymax), ...(xmax,−ymax)

(−xmax,−ymax + 2π), (−xmax + 2π,−ymax + 2π), ...(xmax,−ymax + 2π)

...

(−xmax, ymax), (−xmax + 2π, ymax), ...(xmax, ymax)

2



and draw the principle coamoeba at each of them. This will undoubtedly con-
struct extraneous coamoebae, but it will certainly draw each coamoeba that
intersects the fundamental domain centered at (0,0). Implementing this deals
with the first coloring issue.

Through my algorithm, the final two coloring problems can be handled to-
gether. Consider again the principle coamoeba. Take the convex hull, and then
triangulate the figure in such a way that none of the lines created through trian-
gulation intersect any existing lines and that no new vertices are created. This
creates a set of triangles, some of which are likely to have multiplicity zero, but
each having the same multiplicity throughout the entire triangle. I then take
a point inside each triangle, test what the multiplicity is by using a winding
number algorithm, and then shade the triangle the appropriate shade. Once
this is done for each triangle that makes up the principle coamoeba, it corrects
for cycles overlapping themselves and for Γ+ overlapping Γ−.

Finally, draw a coamoeba using each starting point specified in the previously
listed set of ordered pairs, and for each coamoeba drawn, utilize the algorithm
that corrects for overlap. Finish by restricting the display of the graph to
being only the fundamental domain. This will correct all three coloring issues,
although it has the possibility to be highly inefficient.

3 Concluding Remarks

With an implemention as described above, the most time consuming parts of
the program are creating the (2(xmax)+1)(2(ymax)+1) distinct coamoebae and
finding the points within each of the many triangles. An ideal method would
eliminate both of these steps. I have explored the possibility of drawing the prin-
ciple coamoeba in the fundamental domain and every time the coamoeba reaches
a boundary, restarting the line segment on the parallel boundary. Though rela-
tively easy to construct the outline of the coamoeba, shading properly becomes
an issue that is harder to manage. Triangulating a graph like this is actually
quite easy, however a host of new problems immediately arise that I cannot yet
resolve. However, if resolved, this could lead to a greatly improved coamoeba
drawing program.

As a final thought, I believe there is some connection between the mB that
is defined in the last several pages by [1] and the multiplicity of the distinct
regions in the fundamental domain. To be specific, I think that π−2 multiplied
by the area of the coamoeba’s zonotope and the multiplicities in each region of
the coamoeba are somehow related. This is something which I have begun to
think over the past few days, so I have not had sufficient time to formulate a real
hypothesis, though I think the connection could prove useful for efficiently draw-
ing the fundamental domain. Perhaps if someone explores a similar coamoeba
project in the future, this possibility can be investigated and the program can
be improved.

References

[1] L. Nilsson, and M. Passare, Discriminant coamoebas in dimension two, 2009

3


