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Coamoeba: defined

● For any polynomial in two variables with complex 
coefficients, let us define the coamoeba to be:

with the argument defined
as it usually is



  

Coamoeba: extended

● Though this goes beyond the scope of my  project, the 
true definition of a coamoeba is far more general.



  

Example



  

Example (continued)



  

A Better Approach

-Finding coamoebas for more complicated equations 
becomes quite tedious, and there's a high chance of 
error.

-Nilsson and Passare created an algorithm to draw 
discriminant coamoebas in the two dimensional case.

-No paper has yet been published that gives an 
algorithm for how to draw discriminant coamoebas in 
greater than two dimensions.



  

Importance of Coamoebas

● Mikhalkin- Correspondence Theorem
● Euler-Mellin Transform—complement 

component of coamoeba?
● A theorem on generic analytic curves
● Applications in physics 



  

A matrices and B matrices



  

Algorithm: Step One

The Horn-Kapranov parametrization is a rational 
mapping given by:

As you recall, our B matrix has row vectors of (-1,-1), (1,0), and 
(0,1).



  

Algorithm: Step One (continued)

The next step is obvious: simplify!

Now, take the limit as t approaches infinity and test 
whether the result is greater than or less than zero (or for 
this case, if it approaches zero from above or from below).



  

Algorithm: Step One (continued)

There are four distinct possibilities:

Each corresponds to a different starting point:



  

Algorithm: Step Two

Now we know where we need to start drawing, 
but what are we going to draw?

We need to reorder the rows of our B matrix so that we 
have the row vectors with decreasing normal slopes:



  

Algorithm: Step Two (continued)

For our example, our row vectors get reordered like this:

At this point, we can start to draw the principle coamoeba.



  

Algorithm: Exciting Conclusion

Consider the fundamental domain centered at the origin. 
Start at the point that you found in the Kapranov 
parametrization. Then start drawing the vectors in order, 
starting at j=1 and ending at j=N.

For our example:



  

Algorithm: The Conclusion (continued)

Finally, take the same starting point, and draw the vectors 
in the same order
but with each component
having opposite sign.



  

Example



  

Example



  

 Example



  

Programming Challenge

● How do you determine the multiplicities of each 
distinct section correctly?

 - First, split the complex polygon into triangles.



  

Programming (continued)

Take each triangle, test a point inside each 
triangle using a winding number algorithm, and 
then shade the entire region with a shade that 
corresponds to the winding number.



  

Winding Number Algorithm

● Step One: Shift the complex polygon such that the 
point to be tested lies at the origin.

● Step Two: Start at the first vertex, and simply connect
connect the vertices

                 w+=-1/2                  w+=1/2                                      w+=1

 

         

          

                       w+=-1/2                                   w+=1/2                       w+=-1



  

An Example Where the Winding 
Number is non-trivial



  

The Most Exciting Example
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