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1 Introduction

An exotic species is a species that is not native to its current habitat and is known as invasive

if it negatively impacts this habitat. There have been a variety of attempts to eradicate

invasive species in different areas, but they have not been particularly successful. In an effort

to find a better method for eradicating invasive fish species, Gutierrez and Teem proposed

a method involving sex-reversal [2]. In 2001 it was discovered, in the Columbia River in the

northwestern United States, that exposure to certain sex hormones can feminize XY fish,

allowing them to reproduce [4]. Then when a feminized XY fish mates with a male XY fish,

they can give birth to a YY fish, known as a supermale. Similarly, hormone exposure can

feminize these YY supermales, allowing them to reproduce also.

Gutierrez and Teem’s proposed eradication method involves the introduction of femi-

nized supermales of an invasive species into a wild population. The feminized supermales

will mate with the wild XY male fish and give birth to YY supermales. Thus there will

be four different populations in this species: female XX, male XY, supermale YY, and the

introduced feminized supermale YY. With these four populations, there are four different

reproduction possibilities. The progeny from the mating of XX and XY is 1/2 XX and 1/2

XY, the mating of XY and the male YY produces 1/2 XY and 1/2 male YY, the mating of

XX and male YY produces all XY progeny, and male YY and female YY mating produces

only male YY. As the number of supermales and feminized supermales increases, the num-

ber of XX females born will decrease. The goal is to eventually eliminate all of the female

fish so that when the addition of feminized supermales stops, the species will die out.
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2 Methods

2.1 The Ordinary Differential Equations Model

The four reproduction possibilities dictate the ordinary differential equations (ODE) for

each of the populations. Let f be the number of XX females of the targeted invasive species

in the ecosystem, m be the number of XY males, s be the number of YY supermales, and r

be the the number of YY feminized supermales. The feminized supermales are added to the

ecosystem at a constant rate µ. There is a birth coefficient β that represents the proportion

of male/female encounters that produce viable offspring. The death coefficient δ represents

the proportion of the population that dies in a unit time period. K is the carrying capacity

of the ecosystem, and L is the logistic term that prevents the population from exceeding

the carrying capacity, that is L = 1− (f +m+ r + s)/K. Using these parameters and the

reproduction possibilities, Gutierrez and Teem developed the ODE model below.

df

dt
=

1

2
fmβL− δf, (1)

dm

dt
= (

1

2
fm+

1

2
rm+ fs)βL− δm, (2)

ds

dt
= (

1

2
rm+ rs)βL− δs, (3)

dr

dt
= µ− δr. (4)

The birth term of Equation 1 is 1
2fmβL because female fish are only produced from

interactions between m and f , and β of these interactions result in progeny, half of which

are female. Due to the L term, the number of births decreases as the ecosystem approaches

its carrying capacity. Males make up half of the progeny between f and m, half of the

progeny between r and m, and all of the progeny between f and s, so the birth term of

Equation 2 is (12fm+ 1
2rm+fs)βL. The birth term of Equation 3 is (12rm+rs)βL because

half of the progeny between r and m and all of the progeny between r and s are supermale.

Feminized supermales are not produced through mating, so the positive term is just µ, the

rate at which feminized supermales are added to the ecosystem. The negative terms in
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each of the equations represent death, so they are δ, the rate at which fish of the given

species die, multiplied by either the f , m, s, or r population. A numerical solution to the

differential equations was found using the Runge-Kutta method [?].

A limitation of the ODE model is that the population of the invasive species will never

reach zero in finite time, so we developed a stochastic model to more accurately model the

elimination of an invasive species.

2.2 Continuous Time Stochastic Model

The stochastic model employed the Gillespie Algorithm, using the rates from the ODE

model to determine the probabilities of the seven possible events. These seven events are a

birth in the f , m, or s population and a death in the f , m, s, or r population [1]. Time

between events is a continuous random variable that is exponentially distributed with mean

equal to the sum of the seven event rates. Feminized supermales cannot be born naturally,

but µ fish are added to the r population (as long as it doesn’t exceed the carrying capacity)

after each unit of time has passed. Rates of each event are shown in Table 1.

Event Rate

f birth 1
2fmβL

m birth (12fm+ 1
2rm+ fs)βL

s birth (12rm+ rs)βL

f death δf

m death δm

s death δs

r death δr

Table 1: Stochastic Rates

The probability of extinction under various scenarios was determined by running 100

trials and calculating the proportion of trials that will result in extinction, which is sure

once f = 0.

2.3 Discrete Time Spatial Model

A spatial stochastic model does not assume that all fish are always uniformly distributed

throughout their habitat. The habitat is divided into an n× n grid. Each type of fish has
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a certain probability of migrating to one of the four nearest neighboring cells. For diffusive

migration, a fish of a given population will only migrate to a cell that has fewer of its

population than its current cell has. There are at most 16 possible migration events for

each cell of the grid, since there are four nearest neighbors for four different populations.

There are still seven birth/death events for each cell, so for this method there are 24 possible

events at each cell, where the 24th is the event that nothing changes in the discrete time

period. At each time step it is determined which of the 24 events occurs in each cell. The

cells update in a random order at each time step to eliminate any bias based on the order

of cell update.

All models were impletmented in Matlab [3]. The following parameters were used for

all of the trials in this paper: β = 0.01, δ = 0.1, K = 300, and the initial female and male

populations of 100. According to Gutierrez and Teem, β can vary between .01 and 10, and

δ can vary between .1 and 3 [2].

3 Results

3.1 ODE Model

Starting with the number of feminized supermales added at each time unit set at some

positive nonzero integer µ, the number of females in the habitat decreases over time. When

the females reach a certain proportion of the overall population, one can stop the addition of

feminized supermales. When µ = 0, there are two locally stable equilibrium points and one

unstable equilibrium point. It is important to look at both the male and female populations

when µ = 0 in order to determine whether the species will recover to the normal state stable

equilibrium, where m = f or whether it approaches the elimination stable equilibrium.

The results indicate that when µ = 10, the male and female populations recover when

µ is set to zero as soon as the females make up 0.028 or more (with accuracy to the nearest

hundredth) of the total population. Figure 1 shows the recovery when this proportion

threshold is equal to 0.028. If one waits until the females make up 0.027 or a smaller

proportion of the population before setting µ = 0, then the species will proceed towards

extinction, as shown in Figure 2. However, since this is an ODE model, the population will
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never actually reach 0 in finite time.
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Figure 1: ODE solution where µ = 0 when females make up 0.028 of the total population.
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Figure 2: ODE solution where µ = 0 when females make up 0.027 of the total population.

3.2 Stochastic Model

One hundred trials of the stochastic model were run with µ = 5, µ = 10, and µ = 15, and

with a range of different proportions of the overall population that f must reach before

setting µ = 0. Figure 3 displays the probability that the population will go extinct (given

a sufficient amount of time) for the proportion values between 0 and 0.1.

Figure 4 shows the average time to the point where µ is set to zero for the same set of
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Figure 3: Probability of extinction, where µ = 0 when the females make up a certain
proportion. of the total population

100 simulations. It takes significantly longer to get to this point when µ = 5 than when

µ = 10 or µ = 15. The time change is slow between the female proportion of 0.04 and 0.1,

so it only requires a small time cost to wait until the females get to a smaller proportion of

the population, in order to maximize the probability of extinction.
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Figure 4: Average time to the point where µ = 0, given that this occurs when the females
make up a certain proportion of the total population.

Figure 5 shows the average time to extinction, given that µ = 0 as soon as the females

decrease to a certain proportion of the species population. The variance of this data was

greater than the average time to µ = 0, and there are fewer data points when the proportion
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is higher, since not fewer trials result in extinction.
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Figure 5: Average time to extinction, given that µ = 0 when the females make up a certain
proportion of the total population.

3.3 Spatial Model

Based on observations of the spatial model, if the sum of the male and female population

is close to the carrying capacity, then it is very unlikely that the species will go extinct.

Extinction is unlikely because the feminized supermales and supermales do not have enough

space to increase dramatically. Such a dramatic surge is necessary to drive the female

population down toward the desired proportion. Similarly, the value of µ must be high

enough to give the feminized supermales a foothold. Otherwise they will not reproduce a

sufficient number of supermales to outnumber the males and females. It seems as though

it is more productive to add a large number of feminized supermales for a shorter amount

of time than to add fewer fish for a longer period of time. The latter option will be less

successful because there will not be enough of the feminized supermales to migrate and

sustain their population throughout the grid.

4 Discussion

The results of this study provide further insight into the effectiveness of the Trojan Y

Chromosome Model by looking at the model from a stochastic perspective. This more
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realistically models the eradication strategy because it uses integer populations and allows

for the possibility of extinction in finite time. The spatial element extends the model so

that an invasive species can be eradicated from a larger area. The results show that given

a desired probability of extinction and time to extinction, one should wait until the females

make up a specific proportion of the population.

It would be of interest to look into variations of the spatial model. In this model the

feminized supermales are always added to the same cell each time, so often that corner acts

like the non-spatial stochastic model, where the increase in feminized supermales leads to a

reduction in females. However, if the surrounding cells are near the carrying capacity, then

the feminized supermales are not able to migrate very successfully, so the female population

will remain high in most of the grid. It would be interesting to see the effects of adding the

feminized supermales to multiple cells at one time or rotating which cell they are added to.

In addition the spatial model was most successful when a large number of feminized

supermales were added to the ecosystem at first so that the increase in feminized supermales

and resultingly in supermales would drive the female and male population down quickly. If

µ is not large enough and the female and male populations increase towards the carrying

capacity, then there is no longer an opportunity for extinction. This is due to the way

this model was constructed. In this model the addition of feminized supermales and the

migration events cannot surpass the cell’s carrying capacity. It would be interesting to vary

the model so that these processes can surpass the carrying capacity, and then the migration

and death events would drive the population back down to carrying capacity. One way to

implement this would be through a logistic delay equation so that the rates are calculated

using populations from a previous time. This may provide more interesting results and a

greater probability of extinction.

Finally, another variation to explore would be the a continuous time spatial model,

which would be more comparable to the non-spatial stochastic model. This would again

use the Gillespie Algorithm, so the time would update whenever one event occurred in the

entire grid. Thus for an n×n grid, there would be 24×n×n possible events at each step.

This may be more accurate than using a constant time step because in reality dt should

vary based on the current population.
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We hope that this research will help make this TYC eradication strategy a reality in

the future so that we can reduce the negative impacts of invasive species on their aquatic

habitats.
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