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Abstract

Given any complex Laurent polynomial f , Amoeba(f) is defined as
the image of the complex roots of f under the coordinate-wise log abso-
lute value map. The Archimedean tropical variety has been proposed
as a means of approximating Amoeba(f), and there is now an explicit
bound on the Hausdorff distance between the two sets. We illustrate
a polynomial-time sub-algorithm that computes the connected com-
ponents of ArchTrop(f) for a given query point. We then extend this
sub-algorithm to an exponential-time algorithm for approximating the
nearest root to a given query point for a system of polynomials and
finding all intersections of Archimedean tropical varieties for polyno-
mials of a given system.

1 Introduction

1.1 The Program

I had no prior experience with algebraic geometry before this program, and
I feel as if I have learned a good deal about this branch of mathematics,
thanks to my research advisor. Dr. Rojas gave us two weeks of instruction
and lecture before we began research on our project, meeting with my re-
search partners and me to clarify concepts and discuss results as our work
progressed.

Besides learning about good deal about algebraic geometry, I was able to
develop my programming skills in working on this project. My research
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partners and I spent most of our time coding in Matlab, and I am happy I
had the opportunity to learn this valuable skill.

1.2 Introduction to Algebraic Geometry

The traditional means of solving poynomial systems of equations, particuarily
with the use of Grobner Bases, unfortunately has a lower complexity bound
of exponential space. It is fortunate, however, that polyhedtral geometry
can be used to approximate the norms of roots of polynomials, a relationship
first discovered by Isaac Newton over the field of Puiseux series. Because
algebraic varieties can be defined in a tropical setting, becoming unions of
(n-1)-dimensional polyhedra in Rn, we look at tropical geometry, specifically
the Archimedean case, as a means of linking polyhedral geometry with al-
gebraic geometry in order to esimate the norms of roots for multi-variate,
n-dimensional, systems of equations.

1.3 Definitions

We use the abbreviations [N ] := {1, ..., N}, x := (x1, ..., xn), and let Conv(S)
denote the convex hull of a set S. Let us then define the function Log|x| to
be (log|x1|, ..., log|xn|) and, for any f ∈ C[x±11 , ..., x±1n ], we define Amoeba(f)
to be {Log|x| | f(x) = 0, x ∈ (C∗)n}.Also, writing f(x) =

∑t
i=1Cix

ai with
Ci 6= 0 for all i, we define the support (or spectrum) of f to be Supp(f) :=
{ai}i∈t,the (ordinary) Newton polytope of f to be Newt(f) :=Conv(Supp(f)),
and the Archimedean Newton polytope of f to be ArchNewt(f) :=Conv({(ai,−log
|ci|)}i∈t). We also define the Archimedean tropical variety of f , denoted
ArchTrop(f), to be the set of all v ∈ Rn with (v,−1) an outer normal of
a positive-dimensional face of ArchNewt(f).Finally, given any subsets R,
S ∈ Rn, their Hausdorff distance, ∆(R, S), is defined to be the maximum of
sup
ρ∈R

inf
σ∈S
|ρ−σ|, and sup

σ∈S
inf
ρ∈R
|ρ−σ| where |.| denotes the usual L2 norm on Rn.

1.4 Theorem

For any f ∈ C[x±11 , ..., x±1n ] with exactly t monomial terms and Newt(f) of
dimension k, we have t ≥ k + 1 and

∆(Amoeba(f), ArchTrop(f)) ≤ (2t− 3)log(t− 1)

.
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2 Algorithm

An algorithm that calculates the Archimedean tropical variety intersections
lying on the connected component of the union of the Archimedean tropical
varieties that surrounds a given query point for a system of k n-dimensional
polynomial equations is detailed as follows.

Input: For k functions f ∈ Q[x1, . . . xn], written as f(x) =
∑t

i=1Cix
ai

with Ci 6= 0 for all i and the ai distinct, input each Supp(f) concatenated
with -log|Ci| for the k polynomials and a query point, v ∈ Qn.

Output: A matrix consisting of the intersections of the Archimedean
tropical varieties of the k polynomials in the connected component of Rn

surrounding the query point v and a matrix consisting of the distances
from the query point, v, to the given ArchTrop intersections. Descrip-
tion:

1. Using linear programming, determine which vectors
{ai,−log|Ci|} in Supp(f), for each of the k polynomials, cannot be
written as a convex linear combination of the other vectors in the
set. I.e., for any {ak,−log|Ck|}, with k ∈ [t], α1(ai,−log|Ci|)+· · ·+
αn(at,−log|Ct|) 6= (ak,−log|Ck|), the vector (ai,− log |ci) does not
appear on the left hand side of the equation, and the real numbers
αi satisfy αi ≥ 0 and α1 + · · · + αn = 1. These vectors are the
vertices defining the Archimedean Newton polytope, or ArchNewt,
of the function.

2. Now determine which vertex of the ArchNewt(f) yields the maxi-
mal inner product with the query point vector, v. Via the duality
between ArchNewt(f) and ArchTrop(f) this vertex will correspond
to the connected component of the ArchTrop(f) in which the given
query point, v, will lie.
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3. Using a second linear program, determine which vertices of
ArchNewt(f), when paired with the maximizing vertex, define edges
of the ArchNewt(f) for each of the k polynomials. Consider the
midpoints of all the line segments formed by a vertex other than
the maximizing vertex being connected to the maximizing vertex.
If a midpoint cannot be written as a convex linear combination
of any vertices (other than, trivially, the two vertices it is halfway
between), the edge from which it was derived defines an outer edge
of the ArchNewt(f). Thus, the outer edges of the hull emanating
from the maximizing vertex are found.

4. In a third linear program, determine which edges defining
ArchNewt(f) for each of the k polynomials are lower edges. Sub-
tract any ε > 0 from the last coordinate of the midpoint of each
edge, and minimize a variable s that is added to the last coor-
dinate of the linear combination. If the minimum distance s the
midpoint’s last coordinate may be raised while still remaining in
the hull is less than ε, the midpoint originally resided on an upper
edge of the hull. If s = ε, the midpoint originally resided on a
lower edge of the hull. Thus, the lower edges of ArchNewt(f) may
be determined.

5. Now, for each of the k polynomials, subtract the maximizing vertex
from each vertex vector that helps define a lower edge of ArchNewt(f)
in order to obtain the vectors that define the lower edges of each
ArchNewt(f) of interest for the query point, v. Compute the inner
product of each of these vectors with the vectorX = (x1, x2, . . . , xn,−1).
Setting the product less than or equal to zero, the equations for the
hyperplanes defining the connected component of the ArchTrop(f)
in which the query point lies are obtained.

6. Find all k-tuples from the k sets of lower edge vectors in Arch-
Newt(f) for the k polynomials. Check each n-dimensional k-tuple
for linear independence, projecting the vectors “down a dimension”
(i.e. ignoring the last coordinate).
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7. Determine which of those linearly independent lower edge k-tuples
have a Minkowski sum that defines a lower face of the Minkowski
sum of the k ArchNewt(f) they help define via a linear program
similar to that in step 4.

8. Those k-tuples of edges whose Minkowski sums form lower faces
on the Minkowski sum of the k Archimedean Newton Polytopes
define intersections of the k Archimedean Tropical Varieties on the
connected component of the union of the k Archimedean Tropical
Varieties that surrounds the query point. Taking the dot product
of each edge in the k-tuple with (x1, x2, . . . , xn,−1) yields a sys-
tem of k hyperplanes whose intersection is the intersection of the
Archimedean Tropical Varieties we desire. From these intersect-
ing hyperplanes, computing the intersections and (if k = n), the
distance from v to the intersection points, is trivial.

3 Preliminary Results

3.1 The POSSO Suite

We aim to test the efficiency and accuracy of our algorithm, as well as gain
an indication of what the generalization of the Hausdorff bound in section
1.2 to arbitrary dimensions might look like. The POSSO suite provides
an excellent opportunity to do this, offering numerous polynomial systems
of varying sizes and orders that have been used in research in areas like
chemistry and economics.

3.2 Results

For the Reimer 5 and Rose systems, most roots appear to lie less than 2
units from an intersection of the system’s corresponding Archimedean trop-
ical varieties. supa∈log |roots| infb∈ArchTropIntersections |a − b| initially appears to
be relatively small, being 5.3872 for “Chemequs” and 0.5012 for “Caprasse.”
However, supb∈ArchTropIntersections infa∈log |roots| |a−b| seems to be much larger:
111.1693 for “Chemequs” and 5.8575 for “Caprasse.”
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4 Conclusion

4.1 Research

While we have completed our work for the summer, my research partner
and I are planning to continue our work on the project, with the goal of
publishing in a few months with Dr. Rojas. We will be completing testing of
our algorithm using the Posso Suite, and we will be looking at the bounds on
the Hausdorff distance between the known roots of a system of equations and
the intersetions of the polynomials’ Archimedean tropical varieties. We will
additionally be looking at minimizing the time necessary for the algorithm
to complete its computations.

4.2 The Program

I had a great experience at the REU program, and I look forward to continu-
ing work with Sheridan and Dr. Rojas. While I am undecided as to what my
future career plans are, this experience has helped shape my understanding of
the academic math community and work within a research institution. I am
thankful for the opportuntity to participate in this program, and I appreciate
all the help and direction offered by my research mentors and partners.
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