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Abstract

Management of invasive species towards the goal of preserving native
biodiversity and preventing economic damage has traditionally been one
of the most challenging problems faced by modern ecological scientists.
The introduction of modified members of the invasive species, carrying
extra trojan y-chromosomes, may offer a much less harmful, and thus
less expensive technique for controlling or eliminating wild populations
of undesired, sexually reproducing organisms. This paper presents both
deterministic and Stochastic models of the reaction of the wild population
to such trojan introduction. Results upon arbitrary species parameters
support the potential validity of this technique, and give insight into more
environmentally specific interactions.

1 Introduction

For many years, and now to an increasing extent, the issues caused by invasive
species have helped cause severe losses in economic productivity. Similarly, to
the extent that we as a species have decided that local biodiversity is a desirable
thing, and worthy of preservation, such invasive groups pose a dire threat. Zebra
mussels in American waterways, fire ants in the South of the same nation, and
Australia’s cane toads are only among the most visible of many such problematic
species.

The impetus behind study of the Trojan Y-Chromosome strategy for the
elimination of alien species stems from the general inefficacy of previous at-
tempts. When one’s goal is to prevent the destruction of biodiversity, poisoning
the environment to eliminate the target group is not particularly helpful, caus-
ing, as it does, the concurrent elimination of the desired groups. The introduc-
tion of a natural predator or competitor could in theory work very well, but in
practice has a rather dismal track record, the above example of the cane toad
having been caused by just such an intentional introduction.
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Figure 1: Pedigree tree for mating interactions among wild-type and trojan
members of a species where m represents wild-type males, f is wild-type females,
s denotes trojan (YY) males, and r give trojan females.

Introduction of members of an invasive species with altered chromosomes,
specifically having two Y chromosomes (thus the strategy name), seeks to avoid
these issues by creating a system where reproduction among the target species
becomes autocidal to the group in question. This can be best seen in a map-
ping of breeding among the four groups in question where it can easily be seen
that the only way for wild-type female offspring to arise is through one of six
possible breeding outcomes.1 The goal is thus to so alter the normal sex-ratio
of individuals in the species as to drive the wild-type members to extinction.

Analysis of this theory, in combination with the above pedigree tree yields
the following system of ordinary differential equations

df
dt = 1

2βfmL− δf
dm
dt = βL( 1

2fm+ 1
2rm+ fs) − δm

ds
dt = βL( 1

2rm+ rs) − δs
dr
dt = µ− δr

L = 1 − f+m+s+r
K

where β represents the birth rate, δ represents the death rate, L is the logis-
tics term, K is the carrying capacity, µ is the rate of introduction of trojan
specimens, here females, and the combinations of birth terms (e.g. 1

2rm + rs
for trojan males) arise from the application of the mass action law to breeding
patterns.

A substantial analysis of this model can be seen in the work by Xueying
Wang et al. [? ], but in brief, major conclusions reached show that, given
the extinction of wild-type females, there are only two stable equilibria, both
requiring the subsequent extinction of wild-type males, and if the introduction
of trojan females (trojan males are of course produced through breeding), then
only one stable equilibrium remains, that being the case where all individuals
are dead.

This paper thus takes as a starting premise the assumption that stable equi-
libria at extinction exists for all systems concerned. The following work will
then proceed to ask the the questions: how will the deterministic system behave

1Image Citation: [? ]
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under a minimization of µ, how will the same be expressed under alternate mod-
els and types of trojan introduction, and how might such results change when
considered from either a 0-dimensional or 2-dimensional Stochastic perspective.
Possible answers will subsequently be suggested through targeted examples us-
ing arbitrary, but hopefully not unreasonable starting parameters.

2 Bang-Bang Analysis

The premise of a bang-bang system is that for some spacial interval (usually
time), one state exists, and after that spacial interval, another exists. When
applied to the Trojan Y-Chromosome system, the bang-bang system manifests
itself as a time interval from t0 to t1 for which µ has some positive constant
value, and after which µ = 0.

We examine this system as we consider the feasibility of implementation
strategies2. Clearly a trojan input for all time would be impractical, so we
attempt to minimize, in a bang-bang scenario, the time over which we supply the
modified group. Here, we choose arbitrary parameters, though hopefully ones
which correspond to reasonable expectations of reality, and define the extinction
state to be < .01K for carrying capacity K. We then reduce the cut of time for
µ such that the wild-type females and males still reach extinction by the end of
the simulation.

In this case, it should be noted that for a seemingly reasonable introduction
rate, species die off in a seemingly reasonable amount of time, suggesting the
potential viability of this technique as here described.

2.1 Proportional Model

The model as so far described will, of course, have many problems. One, how-
ever, stands out as potential significant, that is, the reliance on the mass action
law, in that it does not take into consideration potential selective pressure on
breeding behavior. We thus suggest a simple alteration to the system of equa-
tions to include variables of proportionality, that is, the relative proportions of
mating pairs of individuals to represent selective pressure.

df
dt = 1

2βfmPfmL− δf Pfm = fm
(f+r)(m+s)

dm
dt = βL( 1

2fmPfm + 1
2rmPrm + fsPfs) − δm Pfs = fs

(f+r)(m+s)
ds
dt = βL( 1

2rmPrm + rsPrs) − δs Prm = rm
(f+r)(m+s)

dr
dt = µ− δr Prs = rs

(f+r)(m+s)

L = 1 − f+m+s+r
K

Here, selective pressures are equal between modified individuals and wild-
types, however disjoint versions could easily be created through the simple use of
constants in front of the terms of proportionality such that the set still summed
to 1.

2see Figure 2
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Figure 4:

One can easily see why such a model might be significant from the point
of view of either the group implementing such a strategy or those breeding the
trojans to be introduced. Even under this simple alteration3, the minimization
of µ requires roughly half of the input that the basic, non-selective model does.

And so we must ask the question of how to look at µ minimization over
various space. It would be nice to look at this question analytically, but the
complexity of the problem has prevented that analysis here. However, we can
give a simple spectral analysis of µ-space for our selected arbitrary parameters
in the hopes that the results will give insight into the general behavior of the
system.

In this figure, we see really what we would expect for the two models, basic
and proportional, through µ-space in terms of the total number of trojans which
would need to be supplied. On the left appears a vertical asymptote, not sur-
prising as too low of an input rate should, as demonstrated here, merely reduce
wild populations, but reach a new equilibrium short of the extinction state. As
µ approaches K (here 100), the logistics term prevents further breeding events,
causing population change to be defined by the death term. As this time to
extinction is generally the same across all µ for which the logistics term is 0,
higher µ will give the demonstrated higher cost in introduced trojans. Thus
we are left with an absolute minimum in trojans introduced, comfortingly sit-

3see Figure 3
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uated at a seemingly reasonable percentage of K, and the previous analysis of
the causes behind the shape of the graph for these parameters leads this paper
to suspect that similar results would be obtained for all other combinations of
parameters corresponding to reasonable biological systems.

2.2 Trojan Male Introduction

With the goal of offsetting the sex ratio, the previous pedigree tree reveals that
introduction of modified females is not the only way to create a higher per-
centage of male offspring. Instead, one could introduce only the trojan males.
This would clearly not be as effective in an absolute sense as the offspring ratio
is now slightly less against female offspring. However, it turns out that cur-
rent strategies for producing these trojan varieties can only produce modified
females by chemically treating the aforementioned modified males in their in-
fancy. If the mere introduction of modified males could be demonstrated to be
sufficiently effective, this might represent a not insignificant savings margin at
the production level. Fortunately the systems of differential equations can be
easily modified:

df
dt = 1

2βfmL− δf
dm
dt = βL( 1

2fm+ fs) − δm
ds
dt = µ− δs

L = 1 − f+m+s
K

with the corresponding proportional form:

df
dt = 1

2βfmPmL− δf Pm = m
(m+s)

dm
dt = βL( 1

2fmPm + fsPs) − δm Ps = s
(m+s)

ds
dt = µ− δs

L = 1 − f+m+s
K

The results under a spectral sampling of µ space are as we had hoped,
generally similar4. The curve shape matches the presumed forces acting upon
it, and thus simultaneously validates our hope that such a strategy might prove
effective. It now remains for relevant parties to do a cost analysis to determine
their own approach.

Cost reduction, however, does in fact have us ask the question: is the breed-
ing derived change int he sex ratio causing the elimination of the wild-type
female population, or is it instead the effect of the logistics term. In effect,
would a sterile introduction, with equations:

df
dt = 1

2βfmL− δf
dm
dt = β 1

2fmL− δm
ds
dt = µ− δs

L = 1 − f+m+s
K

4see Figure 5
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Figure 5:

where s now denotes the population of sterile individuals, prove potential ef-
fective. As shown below5, the answer is yes, subject, of course, to an analysis
of production and implementation costs. Presumably, though, it may prove
much less expensive to produce non-breeding versions of the population than
genetically altered ones.

3 Stochastic Analysis

To this point, only deterministic systems have been considered. These are of
course highly effective under the proper conditions, especially those of high pop-
ulation values where random fluctuations often manifest themselves as slight
variations from mean tendencies. However, the whole point of the trojan y-
chromosome introduction process is to cause extinction events. Such low popu-
lation events are, of course, the realm of random occurrences.

We begin the analysis by converting the deterministic model for modified

5see Figure 6
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Figure 6:

female introduction into a set of eight birth and death probabilities

F Birth = 1
2βfm F Death = 1

2βfmL
′ + f

M Birth = β( 1
2fm+ 1

2rm+ fs) M Death = βL′( 1
2fm+ 1

2rm+ fs) +m
S Birth = β( 1

2rm+ rs) S Death = βL′( 1
2rm+ rs) + s

R Birth = µ R Death = r

L′ = f+m+s+r
K

where we have non-dimensionalized in δ, meaning that β now represents the
birth constant, birth rate over death rate, and time is measured in units of t∗ δ.
L′ represents the negative portion of the logistics term.

The following data6 was produced through collating the data from 40, 000
stochastic runs the same parameters as the deterministic model, and it is ini-
tially encouraging, representing, under our admittedly arbitrary parameters, a
relatively quick decay extinction on the part of wild-type females where the
dashed line for each of the represented populations is their mean value through
time, and the vertical shading gradient gives a visual representation of the prob-
ability distribution through population space at a given time.

An examination of the probability distribution7 of time to extinction of wild-
type females confirms this conclusion for this particular set of conditions, but

6see Figure 7
7see Figure 8
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Figure 7: Spatial distribution of populations through time.
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Figure 8: Probability distribution of time to extinction of the wild-type female
population with mean = 2.42, variance = 3.93, and skewness = 12.2.

also speaks to the necessity of greater caution than the deterministic analysis
gives. The distribution has quite a long, high-time-to-extinction tail, represent-
ing the not insignificant possibility that introduction time would need to be
much longer than the mean would suggest.

3.1 Spacial Stochastic

Previous models, and previous analysis has limited itself to the zero-dimensional
case – the proverbial well mixed pot scenario. The probabilities can be easily
be modified to a spacial system with the mere introduction of a migration term.

F Birth = 1
2βfm F Death = 1

2βfmL
′ + f

M Birth = β( 1
2fm+ 1

2rm+ fs) M Death = βL′( 1
2fm+ 1

2rm+ fs) +m
S Birth = β( 1

2rm+ rs) S Death = βL′( 1
2rm+ rs) + s

R Birth = µ R Death = r

L′ = f+m+s+r
K

Migrate = population ∗ migration speed
cell length

There are many ways in which to introduce the migration term, none particu-
larly better than others except in how they relate to specific species. Here, as
a general base case, we have adopted a random-walk type migration, giving a
probability based on system parameters of a migration event taking place on a
cell by cell basis. The probabilities of directional migration are thus the proba-
bility of a migration taking place divided by the number of viable directions to
migrate too. Here we model the environment as a simple grid and limit move-
ment to up, down, left, and right, with the particular habitat analyzed shown
below8.

Here, the green squares represent the cells in which we input our trojan
varieties. Working specially allows us to add this degree of realism to the system.

8see Figure 9
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Figure 9: Sample habitat

12



Figure 10:

In most cases of invasive species management, the population would presumably
be spread over a large area, preventing uniform introduction.

The results of this run are, perhaps not surprisingly, quite similar to the
previous systems9. Here, we have preserved the previous parameters, and given
a relatively low migration rate with migration speed = 1 and cell length = 1.

Examining the distribution of time to extinction10, we see the same, similar
results, except, of course, that we have increased our mean time to extinction –
here measuring the time to zero wild-type female population through the whole
system – by an order of magnitude. This should not come as much of a surprise,
given that in order for the trojan populations to be able to act upon the wild
populations of distant cells, they must first migrate there. However, it does
highlight the question of where one might optimally introduce trojan varieties.
This is further emphasized by the data right of the extinction time distribution,
where cell by cell mean times to extinction are showed on a gradient scale
where white is the maximum time to extinction. In fact, the locations where
one might reasonably expect the shortest time to extinction, i.e. directly under
the introduction locations, are in the middle of extinction times, suggesting that
outside wild populations are migrating in sufficiently quickly to prevent this.

An examination of the same run under a different distribution of introduction

9see Figure 10
10see Figure 11
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Figure 11: Probability distribution of time to extinction of the wild-type female
population with mean = 35.3, variance = 465, and skewness = 11, 500 and
cell-wise mean time to extinction with maximum time = 27.7

Figure 12: Probability distribution of time to extinction of the wild-type female
population with mean = 28.9, variance = 295, and skewness = 6, 690 and
cell-wise mean time to extinction with maximum time = 26.7

locations11 demonstrates the importance of location choice. Here, with corner
inputs, several units of time have been shaved off of the mean time to extinction,
and both the variance an skewness of the distribution have been significantly
reduced.

4 Conclusion

What we unfortunately don’t have is a set of analytic analyses on these various
models. However what we do is a set of powerful tools for finding answers to
the relevant questions, questions of species, environment, and behavior.

More significantly, however, it seems like we have tools to point in the di-
rection of which questions to ask. Which model is appropriate: deterministic
or Stochastic; basic or proportional; trojan female introduction, trojan male in-
troduction, or something else; 0-dimensional or spacial? In particular, it would
be very interesting to see a more robust analysis of spacial geometries of intro-

11see Figure 12
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duction locations in the continuation of the effort to minimize the amount of
trojans it is necessary to introduce. However, under the correct circumstances,
this technique does appear to lend itself as one of the more viable options in
invasive species control.
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