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Background on Cyclophosphamide

I Pro-drug typically used in immune suppression and
chemotherapy

I Can assist in oncolic virotherapy, the use of engineered viruses
to combat cancerous cells

I Used to suppress the immune system enough so that the
viruses can infect and kill the cancerous cells in the body

I Necessary to control the timing and amount of doses due to
its toxicity



Pharmacodynamics of Cyclophosphamide (CY)

I Inactive until it reaches the liver and is metabolized to
hydroxycyclophosphamide(HCY)

I About 70% of CY is metabolized to HCY, the rest is primarily
excreted unchanged in urine

I HCY lives in equilibrium with its tautomer
aldophosphamide(AP)

I AP is what kills cells at tissue level

I HCY is primarily eliminated through AP



Pharmacodynamics of Cyclophosphamide

Credit: Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoieitic stem cell

transplantation



Model Building for CY

I Focused on CY concentrations in the liver and blood and the
AP concentration in the liver and tissue

I Didn’t include HCY in the model, AP is what interacts
chemically in tissues and degrades in the liver

I Assumed that a third of the amount of HCY being activated
in the liver directly converted to AP

I Blood is simply a means of transport between the liver and
tissues



Pharmacodynamics of Cyclophosphamide



Differential Equations For CY Pharmacodynamics

dCB

dt
= k1(CL − CB)− CBkEC + D(t) (1)

dCL

dt
= −k1(CL − CB)− CLkAH (2)

dAL

dt
= kAACL − k2(AL − AT )− kEAAL (3)

dAT

dt
= −k2(AT − AL)− µAT (4)

D(t) is the controlled dose given every 24 hours, denoted as a
piecewise function



Some Results

Dose of 5 mg/kg

Dose of 20 mg/kg



Population Dynamics of Leukocytes

I Stem cells (S), multipotent progenitor cells(MPP), common
progenitor cells(CM), lymphocytes (L) and granulocytes(G)

I S → MPP → CM → L&G

I S and MPP also regenerate depending on L and G cell
concentration

I Together L and G make up all the Leukocytes



Leukocyte Model

I φ -feedback functions (L and G)

I µ - death rates

I λ, rd , rp′ , rcm - rates

I θ - fixed proportion L is made
from CM



Leukocyte Model Differential Equations

dS

dt
= S ln(

K

S
)(rs − rp′φp′ [L,G ])φs [L,G ]− µsS (5)

dMPP

dt
= S ln(

K

S
)(rs + 2rp′φp′ [L,G ])φs [L,G ]+

MPP((λ− rd)φp[L,G ]− µp − α1At(t)) (6)

dCM

dt
= MPPrdφp[L,G ]ΩN − CM(µcm + rcm + α2At(t)) (7)

dL

dt
= CMrcmθ

10

3003
+ L(rl − µl − µl∗Ivt>vth − α3At(t)) (8)

dG

dt
= CMrcm(1− θ)

10

3003
+ Gµg (9)



Some Issues With Interpreting this Model

I Could not find the α3 value

I My model doesnt work with only α2 & α1

I Because of the feedback functions, effects of the doses are
extremely complicated



10 days 5 mg/kg a day

α = 0
L and G decreases 46%

α = 0.5
L decreases 68%

α = 1
L decreases 81%

α = 2
L decreases 93%



Finding Optimal Doses

My solution of differential equations as a function of a loading
dose, maintenance dose, and time in Mathematica

I A loading dose is a high dose given to achieve a drastic effect
quickly

I First three days

I A maintenance dose is a lower dose to maintain that effect
I Following seven days



Examples of Optimal Loading and Maintenance Doses
depending on α3

α3 value LD MD ∆L 3 days ∆L 10 days

0 200 10 17.3% 50.2%
.1 60 1 30.3% 73.6%
.2 30 1.5 29.6% 73.8%
.25 25 1.5 29.9% 74.6%
.3 22 0.5 30.4% 74.9%
.35 19 0 30.3% 74.5%



The end product



Future Work

I Taking the viral response into account

I Finding a more definitive α3 parameter or maybe α1 & α2 are
functions rather than rates

I Fit data to my model

I Using elements of Control theory to find optimal dosage



Thanks for listening!


