Modeling Cyclophosphamide's Effect on Leukocytes

Matea Alvarado

Math Modeling in Biology 2014 Summer REU

July 23rd, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Agenda

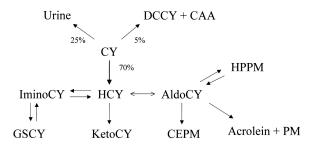
- Motivation For Project
- Background Biology and Chemistry

- Model Construction
- Differential Equations
- Results
- Further Study

Background on Cyclophosphamide

- Pro-drug typically used in immune suppression and chemotherapy
- Can assist in oncolic virotherapy, the use of engineered viruses to combat cancerous cells
- Used to suppress the immune system enough so that the viruses can infect and kill the cancerous cells in the body
- Necessary to control the timing and amount of doses due to its toxicity

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで


Pharmacodynamics of Cyclophosphamide (CY)

- Inactive until it reaches the liver and is metabolized to hydroxycyclophosphamide(HCY)
- About 70% of CY is metabolized to HCY, the rest is primarily excreted unchanged in urine

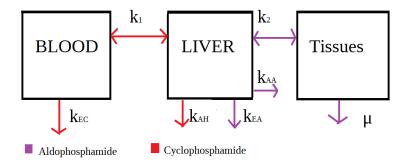
(日) (문) (문) (문) (문)

- HCY lives in equilibrium with its tautomer aldophosphamide(AP)
- AP is what kills cells at tissue level
- HCY is primarily eliminated through AP

Pharmacodynamics of Cyclophosphamide

Credit: Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoieitic stem cell transplantation

(日) (四) (三) (三)


æ

Model Building for CY

- Focused on CY concentrations in the liver and blood and the AP concentration in the liver and tissue
- Didn't include HCY in the model, AP is what interacts chemically in tissues and degrades in the liver
- Assumed that a third of the amount of HCY being activated in the liver directly converted to AP
- Blood is simply a means of transport between the liver and tissues

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

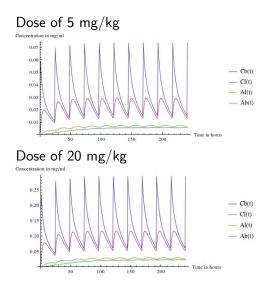
Pharmacodynamics of Cyclophosphamide

æ

Differential Equations For CY Pharmacodynamics

$$\frac{dC_B}{dt} = k_1(C_L - C_B) - C_B k_{EC} + D(t) \tag{1}$$

$$\frac{dC_L}{dt} = -k_1(C_L - C_B) - C_L k_{AH}$$
(2)


$$\frac{dA_L}{dt} = k_{AA}C_L - k_2(A_L - A_T) - k_{EA}A_L \tag{3}$$

$$\frac{dA_T}{dt} = -k_2(A_T - A_L) - \mu A_T \tag{4}$$

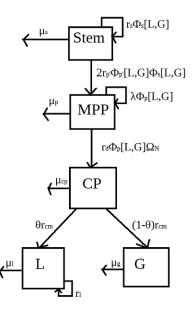
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\mathsf{D}(\mathsf{t})$ is the controlled dose given every 24 hours, denoted as a piecewise function

Some Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Population Dynamics of Leukocytes


 Stem cells (S), multipotent progenitor cells(MPP), common progenitor cells(CM), lymphocytes (L) and granulocytes(G)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\blacktriangleright \ \mathsf{S} \to \mathsf{MPP} \to \mathsf{CM} \to \mathsf{L\&G}$
- S and MPP also regenerate depending on L and G cell concentration
- Together L and G make up all the Leukocytes

Leukocyte Model

- ϕ -feedback functions (L and G)
- μ death rates
- ▶ λ , r_d , $r_{p'}$, r_{cm} rates
- θ fixed proportion L is made from CM

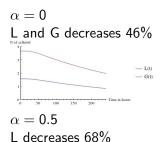
Leukocyte Model Differential Equations

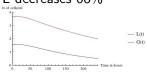
$$\frac{dS}{dt} = S \ln(\frac{K}{S})(r_s - r_{p'}\phi_{p'}[L,G])\phi_s[L,G] - \mu_s S$$
(5)

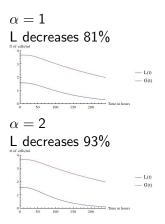
$$\frac{dMPP}{dt} = S \ln(\frac{K}{S})(r_s + 2r_{p'}\phi_{p'}[L,G])\phi_s[L,G] +$$

$$MPP((\lambda - r_d)\phi_p[L, G] - \mu_p - \alpha_1 A_t(t))$$
(6)

$$\frac{dCM}{dt} = MPPr_d\phi_p[L,G]\Omega_N - CM(\mu_{cm} + r_{cm} + \alpha_2A_t(t))$$
(7)


$$\frac{dL}{dt} = CMr_{cm}\theta \frac{10}{3003} + L(r_l - \mu_l - \mu_{l*}I_{vt>vth} - \alpha_3A_t(t))$$
(8)


$$\frac{dG}{dt} = CMr_{cm}(1-\theta)\frac{10}{3003} + G\mu_g$$
(9)


Some Issues With Interpreting this Model

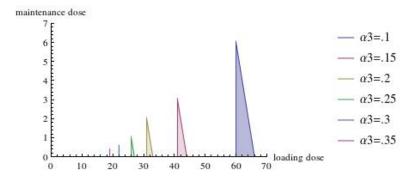
- Could not find the α_3 value
- My model doesnt work with only α_2 & α_1
- Because of the feedback functions, effects of the doses are extremely complicated

10 days 5 mg/kg a day

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

My solution of differential equations as a function of a loading dose, maintenance dose, and time in Mathematica

 A loading dose is a high dose given to achieve a drastic effect quickly


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- First three days
- A maintenance dose is a lower dose to maintain that effect
 - Following seven days

Examples of Optimal Loading and Maintenance Doses depending on α_{3}

$lpha_{3}$ value	LD	MD	Δ L 3 days	Δ L 10 days
0	200	10	17.3%	50.2%
.1	60	1	30.3%	73.6%
.2	30	1.5	29.6%	73.8%
.25	25	1.5	29.9%	74.6%
.3	22	0.5	30.4%	74.9%
.35	19	0	30.3%	74.5%

The end product

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Future Work

- Taking the viral response into account
- Finding a more definitive α₃ parameter or maybe α₁ & α₂ are functions rather than rates

- Fit data to my model
- Using elements of Control theory to find optimal dosage

Thanks for listening!

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで