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Abstract

The World Health Organization has called for global eradication of Polio by 2018,
but the disease remains endemic in three countries. Using an expanded SIR model, the
present contribution takes into account the effects of a rapidly growing population on
the effectiveness of various vaccination protocols and on the burden of disease in the
community. Necessary and sufficient conditions were found for elimination of Polio in
such a population in the event of an outbreak.

1 Background

Poliomyelitis, known to most simply as Polio, has afflicted the human race since the late
18th century. It was not until the 1950s that we had any defense against this infectious
disease. This was just around the time that Polio was at its peak in the United States,
causing paralysis in more than 21,000 Americans in 1952 alone. The first defense against
Polio- the injected Polio vaccine (IPV)-was introduced by Jonas Salk in 1955. This was
quickly followed by an oral Polio vaccine developed in the early 1960s by Albert Sabin. Each
vaccine has its benefits and drawbacks, but these two vaccines continue to be distributed
and refined today. Most developed countries have switched to exclusively using IPV because
of the vaccine derived infections sometimes caused by OPV, but OPV continues to be used
in developing countries because of its cost-effectiveness, reliability for initiating an immune
response in the gut, and ease of administration(?).

In 1988, the World Health Organization declared the eradication of Polio by 2000 to be
a global goal. Complete eradication was not achieved in this time period, but elimination
of Wild-Type Polio 2 (WPV2), one of three wild polio strains, was successful. Today, Polio
remains present in areas of Africa and Western Asia, mostly in the form of WPV1(?), and
the WHO has set its sights on 2018 as the new target for eradication. This is a difficult
task, since Polio can often remain unnoticed in a population for a long period of time, since
the majority of cases are asymptomatic and do not result in the easily detectable Acute
Flaccid Paralysis(AFP)(?).
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Only three countries have never seen eradication of Polio within their borders: Nigeria,
Pakistan, and Afghanistan. Each of those countries presents a different public health
challenge to the global community, but the greatest worry is that continued infection
in those countries will results in Polio reinfecting communities nearby that have already
eliminated the disease(?). Nigeria in particular is quite close to eradicating Polio, and
only four wild Polio cases have been reported this year (though because of Polio’s high
prevalence of asymptomatic cases, every detected case is considered a full-scale outbreak
?). One of Nigeria’s unique roadblocks is that it has one of the fastest growing populations
in the world. In this study, we intend to discover how this non-constant population affects
spread of the Polio virus in Nigeria.

The results of this research can be used to examine strategies for preventing the spread
of Polio in Nigeria, and can also be easily extrapolated to suggest vaccination methods for
other infectious diseases in populations with non-constant growth.

2 Model Development

2.1 Model

Using an SIR modeling approach, we came up with a fundamental model for the spread
of Polio in a population, with modifications to include two separate vaccination strategies.
Illustrations for those models are included below.
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Figure 1: SIR Model For 1-5 Year-Old Vaccination Strategy

The models used are split population models, where SC , IC , and RC denote the sus-
ceptible, infectious, and recovered compartments for children, and SA, IA, and RA denote
the susceptible, infectious, and recovered compartments for adults. For the purposes of
these models, children are considered to be persons in the 1-4 year age range, and adults
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Figure 2: SIR Model For Newborn Vaccination Strategy

to be any person age 5 or above. The child class age range was chosen to reflect the stan-
dard ages at which children are vaccinated. In Nigeria, vaccinations for this age class in
particular are conducted during nation-wide Supplemental Immunization Activities(SIAs)
every several months. Nigeria also has a highly imbalanced population distribution, with
a median age of 18 and more than 40% of the population under the age of 14, which has
an important impact on the public health burden of an outbreak in a Nigerian community.
This public health burden is exacerbated by the fact that 25-30% of adults infected with
Polio ultimately die from the disease, and those adults who survive take much longer to
recover than children. Conversely, children tend to die at a much faster rate from all other
causes. To simulate maturation of individuals from the child to adult classes, we introduce
a maturation rate for the susceptible and recovered classes, but disregard maturation in
the infectious class because the infectious period is fairly short.

Another critical aspect of this model is the non-constant population and non-constant
death rates. As mentioned above, Nigeria’s child mortality rate is much higher than its
crude death rate, both of which we assume to be independent from death from the disease.
We make the assumption that no children die from the disease (since research suggests that
only 1% of child Polio cases result in death). However, we cannot make this assumption
for infectious adults, whose mortality rate is about one quarter. Instead, we assume that
infectious adults will not die from other causes, since the infectious period is so short. It
is also important to note that the birth rate is dependent only on the adult population,
since those in the child classes cannot reproduce.

The contact infection and recovery rates reflect the typical rates used in SIR models,
though they are specific to Polio and Nigeria. This model takes into account different
recovery rates for children and adults, but assumes that the contact infection rates will be
the same, since there is no clear data that indicates otherwise.
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Figure 1 demonstrates our first vaccination strategy: vaccinating those in the suscep-
tible children class. In this model, children ages 1-4 flow from the susceptible class to
the recovered class at a vaccination rate α. This is reflective of the SIA campaigns where
public health officials try to vaccinate some percentage (α) of susceptible children in this
age range.

The second vaccination model that is considered (Figure 2) portrays the scenario in
which immunized children finish their polio vaccine series before the age of 1, so they enter
the population in the recovered class. In this case, the vaccination rate α represents the
percentage of newborns that are vaccinated in their first year of life. We assume for both
models that the administered vaccine series provides lifelong immunity.

We can express the model in which 1-5 year-olds are vaccinated as the following system
of differential equations:

S′C(t) = ρNA(t)− βSC(t) IC(t)+IA(t)
N(t) − (θ + δC + α)SC(t)

I ′C(t) = βSC(t) IC(t)+IA(t)
N(t) − (γC + δC)IC(t)

R′C(t) = γCIC(t)− (δC + θ)RC(t) + αSC(t)

S′A(t) = θSC(t)− βSA(t) IC(t)+IA(t)
N(t) − δASA(t)

I ′A(t) = βSA(t) IC(t)+IA(t)
N(t) − (γA(1− µ) + dµ)IA(t)

R′A(t) = θRC(t) + γA(1− µ)IA(t)− δARA(t)

SA(t) + IA(t) +RA(t) = NA(t)

SC(t) + IC(t) +RC(t) = NC(t)

NC(t) +NA(t) = N(t).

The differential equations for our second model considering vaccination of newborns
are similar, but the following two equations replace the original equations for S′C(t) and
R′C(t):

S′C(t) = (1− α)ρNA(t)− βSC(t) IC(t)+IA(t)
N(t) − (θ + δC)SC(t)

R′C(t) = γCIC(t)− (δC + θ)RC(t) + αρNA(t).

2.2 Disease Free State

In order to evaluate the efficacy of our vaccination models, we must first determine their
behavior at the disease free state. We can model the child and adult classes at a disease
free state (note that with a growing population this is not an equilibrium) by the following
system of equations:

N ′C(t) = ρNA(t)− (δC + θ)NC(t)
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N ′A(t) = θNC(t)− δANA.

We can use these results to compare an ideal population model (no disease) to the
outcomes of introducing Polio into a population, which will increase net death due to adult
mortality from the disease.

We find that for our newborn vaccination scenario, the following equilibria are reached
for the non-dimensionalized compartments:

S

N
(t) = (1− α),

I

N
(t) = 0, and

R

N
(t) = α.

Specifically, we have

SC
N
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N
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N
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N
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2.3 Perturbation of the Disease Free State

Due to our split population model, we do not have a single infectious class to monitor when
the disease free state is perturbed, so we must introduce a new standard to consider what
it means for Polio to be epidemic. The following method outlines this approach, where we
perturb the disease free state by a small amount (~ε(t)) and then observe whether ~ε subsides
to ~0 or takes off exponentially. This observation indicates whether or not the disease free
state is stable (when ~ε′(0) is negative) or unstable(when ~ε′(0) ≥ 0).

Define ~x(t) =

(
S(t)
I(t)
R(t)

)
and ~x′(t) = =(~x(t)). Let ~ε(t) > ~0 for all t > 0 and suppose that

~x = ~xDFS(t) + ~ε(t). Then ~x′(t) = =(~x) = =(~xDFS(t) + ~ε(t)). Using a Taylor expansion
around ~xDFS(t), we can approximate =(~x) = =(~xDFS(t) + Dx=(~xDFS(t))~ε(t). Thus, we
find that ~ε′(t) = Dx=(~xDFS(t))~ε(t). We can then find J = Dx=(~xDFS(t)), the Jacobian
of our system of differential equations evaluated at the disease free state. For our model
considering vaccination of 1-5 year-olds, we find that

J1 =



−δC − θ − α −β SC
N 0 ρ ρ− β SC

N ρ

0 β SC
N − γC − δC 0 0 β SC

N 0
α γC −δC − θ 0 0 0

θ −β SA
N 0 −δA −β SA

N 0

0 β SA
N 0 0 β SA

N − dµ− γA(1− µ) 0
0 0 θ 0 γA(1− µ) −δA


.

In order for the disease free state to be stable, all six eigenvalues of the Jacobian
must be negative. Using Routh-Hurwitz criteria, we find that satisfaction of the following
inequalities are necessary and sufficient conditions for this stability:

(δC + θ)δA > ρθ (1)
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β SC
N

δC + γC
+

β SA
N

dµ+ γA(1− µ)
< 1. (2)

Likewise, we find the following Jacobian for our vaccinating newborns model:

J2 =



−δC − θ −β SC(t)
N(t) 0 ρ(1− α) ρ(1− α)− β SC(t)

N(t) ρ(1− α)

0 β SC(t)
N(t) − γC − δC 0 0 β SC(t)

N(t) 0

0 γC −δC − θ ρα ρα ρα

θ −β SA(t)
N(t) 0 −δA −β SA(t)

N(t) 0

0 β SA(t)
N(t) 0 0 β SA(t)

N(t) − dµ− γA(1− µ) 0

0 0 θ 0 γA(1− µ) −δA


and the following Routh-Hurwitz inequalities:

1− (δC + θ)δA
ρθ

< 2α (3)

β SC
N

δC + γC
+

β SA
N

dµ+ γA(1− µ)
< 1.

We note that inequality (2) is present for both models, and that it bears remarkable
similarity to typical R0 values for simple constant population models. In the case of our
newborn vaccination models, we can use the above calculation for the disease free state to
find inequality (2) in terms of the vaccination rate as follows:

β(1− α)NC
N

δC + γC
+

β(1− α)NA
N

dµ+ γA(1− µ)
< 1.

This derivation is significant in that both inequalities for the newborn model are depen-
dent on the vaccination rate, which is much easier to manipulate than birth or death rates.
We observe that if the vaccination rate is 1 (which would correspond to 100% vaccination
of newborns), both inequalities would automatically be satisfied. We can use inequalities
(2) and (3) to find the minimum vaccination rate necessary to prevent an epidemic when
Polio is introduced to a previously disease free population.

2.4 Finding Equilibria

In addition to examining the necessary conditions for prevention of an epidemic in the case
of an outbreak, we are interested in the long term effects of the disease on the population.
It is critical to the eradication endgame to determine whether or not the disease will reach
an endemic equilibrium. However, this is much more difficult to discern given a growing
population.
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Figure 3: Basic SIR Model with Non-Constant Population

Before diving in with our split population model, we examine the effects of a non-
constant population on the simple SIR model pictured above in Figure 3.

For the above system, we assume that ρ > δ, which gives us a growing population. Note
that in this special case, birth and death from the population are uniform and proportional
to the total population.

We can express this model as a system composed of the following ordinary differential
equations:

S′(t) = ρN(t)− δS(t)− βS(t)
I(t)

N(t)

I ′(t) = −δI(t)− γI(t) + βS(t)
I(t)

N(t)

R′(t) = γI(t)− µR(t)

where

N(t) = S(t) + I(t) +R(t).

Then N ′(t) = (ρ − δ)N(t). So N(t) = N0e
(ρ−δ)t. Let n(t) = N(t)

N0
, s(t) = S(t)

N0
, i(t) =

I(t)
N0
, r(t) = R(t)

N0
. Then s′(t) = ρn(t)− δs(t)− βs(t) i(t)n(t) . We rearrange this equation to find

that s′(t) − (ρ − δ)s(t) = βs(t) i(t)n(t) + ρ(i(t) + r(t)). Thus d
dt(s(t)e

−(ρ−δ)) = (−βs i(t)n(t) +

ρ(i(t) + r(t)))e−(ρ−δ)t. Since we know that n(t) = e(ρ−δ)t, we rewrite the previous equation

as d
dt

(
s(t)
n(t)

)
= −β s(t)n(t)

i(t)
n(t) + ρ( i(t)n(t) + r(t)

n(t)). Similarly, we find that d
dt

(
i(t)
n(t)

)
= β s(t)n(t)

i(t)
n(t) −

(ρ+ γ) i(t)n(t) and d
dt

(
r(t)
n(t)

)
= γ i(t)n(t) − ρ

r(t)
n(t) .
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We define σ(t) = s(t)
n(t) , η(t) = i(t)

n(t) , ξ(t) = r(t)
n(t) . Thus,

σ′(t) = −βσ(t)η(t) + ρ(η(t) + ξ(t)),

η′(t) = βσ(t)η(t)− (ρ+ γ)η(t),

ξ′(t) = γη(t)− ρξ(t).

We observe that σ(t)+η(t)+ ξ(t) ≡ 1. This enables us to consider only σ(t) and η(t), since
we can gather the behavior of ξ(t) from our observations of these other two functions. We
now write σ′(t) = −βσ(t)η(t) + ρ(1− σ(t)).

To find the endemic state of the non-dimensionalized populations, we consider

σ′(t)

η′(t)
=
−βσ(t)η(t) + ρ(1− σ(t))

βσ(t)η(t)− (ρ+ γ)η(t)
= −1 +

ρ(1− σ(t)− η(t))− γη(t)

βσ(t)η(t)− (ρ+ γ)η(t)
.

If σ′(t)
η′(t) > 0, then we will be left with with an endemic state.

The above result is significant because it suggests that non-dimensionalized non-constant
populations behave similarly to constant populations in the way they reach equilibrium.
It remains an open conjecture whether or not this results holds true for models including
death from the disease, but initial numerical analysis suggests this is reasonable.

3 Results

Since we are particularly interested in minimizing the impact of Polio when it is reintro-
duced into a disease free population, we want to evaluate whether the vaccination strategies
outlined above could be effective in the case of an outbreak, and, if so, to determine what
the minimum vaccination rate must be to avoid an epidemic.

For our first model that considers vaccination of children in the 1-5 age class, we find
that the growing population is an obstacle to satisfaction of inequality (1), and that using
the current birth and death rates in Nigeria, it is impossible to satisfy. Due to the feedback
into the population from births, it will be impossible empty the susceptible children class
fast enough to prevent an increasing rate of new infections once the disease is introduced.

Our second approach that models vaccination of newborns yields more promising re-
sults. We find that inequality (3) is satisfied if the newborn vaccination rate exceeds 0.244.
We then find that satisfaction of inequality (2) requires a vaccination rate of 0.784, which
would also satisfy inequality (3). We then used Mathematica to simulate what infection of
a disease free population with this minimum vaccination rate would look like.

We can also observe the effects of a higher or lower vaccination rate on the population in
the case of an outbreak. Note that although the infectious population tends to zero in each
case, that result is achieved much more quickly in the cases where the vaccination rate is
below or above the minimum non-epidemic value. However, we observe that the maximum
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Figure 4: Graph Demonstrating Progress of an Outbreak in Population with 0.78 Vacci-
nation Rate

infectious population is much higher in the 60% case, and occurs at around 17 weeks from
the introduction of the disease. Above the minimum non-epidemic vaccination rate, the
infectious class only shrinks in size, and the peak is at t = 0 weeks. It is also clear that
fewer total people are infected in the above-minimum case compared to the minimum value
case. Therefore there is clear benefit to over-vaccinating rather than under-vaccinating or
vaccinating at the minimum value for epidemic prevention.

Figure 5: Graph Demonstrating Progress of an Outbreak in Population with 0.6 Vaccina-
tion Rate

4 Suggestions for Future Work

Moving forward, there are opportunities to refine the model at hand and use it to test fur-
ther vaccination strategies. Considering the imbalanced population distribution in Nigeria,
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Figure 6: Graph Demonstrating Progress of an Outbreak in Population with 0.9 Vaccina-
tion Rate

it would be illuminating to adjust or increase the age classes and observe whether this has
any effect on the disease spread and minimum vaccination rate predictions. One could also
use the present model to test a combination intervention strategy, where vaccination is
provided to both children in the 1-5 age category as well as newborns, since this is closer
to the strategy currently implemented in Nigeria.

It is our intent to continue research into the effects of varying birth and death rates
on disease spread by extending our proof of the non-dimensionalized equilibrium of the
infectious class to account for death from the disease and multiple age classes.
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A
Table of Values Used

Variable Rate Value

β contact infection rate 1
γC child recovery rate 0.33
γA adult recovery rate 0.17
ρ birth rate 7.3 ∗ 104

δC child death rate 2.4 ∗ 103

δA adult death rate 2.5 ∗ 104

d disease death rate 0.25
µ disease death percentage 0.25
θ maturation rate 4.8 ∗ 103

Values are obtained from ?, ?, and ?.
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