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Abstract

Immunology has always been a complex area of study with many
different pathways and cellular interactions. Mathematically, this can
be represented by systems of ordinary differential equations. Though
analysis of ODEs is simple at first, the complexity of the interactions
that take place within a large network of cells, as is the case in Im-
munology, makes simple analysis much more challenging. However, it
has been shown that a certain immunological network not only has
one equilibrium value, but under certain conditions admits multiple
equilibrium values. Using a base model, I will analyze smaller, embed-
ded subnetworks in order to find the cause of the multiple equilibrium
states.

Introduction

Robust and accurate model building in biology is a very complex art. First,
the biology must be understood and translated into a mathematical rep-
resentation. Next, this mathematical representation has to be analyzed to
determine if the model accuratly describes the biological process. Neverthe-
less, it is imperative that when a new model is introduced, it is analyzed by
others in order to build more complex models.

In Immunology, there are many reactions that must take place in order for
the Immune System to work properly. Since this area of biology is constantly
changing, a base model to describe some of the simpler reactions is necessary
in order to advance the field. One of the most important cells involved in
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Immunology are regulatory T cells[6]. Regulatory T cells are involved in
clearing most actue and chronic infections as well as indicating tolerance for
the immune system[7].

Fouchet and Regeos found a crossregulation model that incorporated reg-
ulatory T cells, APCs, and effector T cells that admits multiple equilibrium
states[1]. The biological meaning of bistability is tolerance. Tolerance is
an unresponsive state of the immune system to a certain substance. Toler-
ance leads to many different biological phenomena such as allergies[1], or-
gan transplants[4], and the acceptance of a fetus inside a mother’s womb[3].
Therefore understanding the basics behind tolerance is necessary in order
create more complex models describing such processes.

My work is geared towards finding the cause of the bistability from the
Fouchet and Regeos regulatory T cell model. My approach is analyzing the
embedded subnetworks of the original model. By doing so, I limit the scope
of the biology at hand allowing me to analyze a smaller interaction network.
The results gained from this type of analysis would indicate what part of
the original network causes the bistability i.e. indicating some cells are more
“important” than others in causing tolerance.

Background

In this section I will layout the definitions and theorem that are used through-
out my research.

Creating subnetworks from the original Fouchet and Regeos model in-
volves chemical reaction networks. Chemical reaction networks involve species,
rate constants, and direction. Chemical species are the different type of reac-
tants and products are the needed or produced. In this case, species are the
different types of cells that are incorporated into the original crossregulation
model. Rate constants are positive real valued numbers that describe how
fast the reaction is going. Incorporating speceis and rate constants create
equations that describe a certain reaction. Reactions can either be unidi-
rectional or bidirection, so directionality is important when creating these
equations. Guldberg and Waage described how to incorporate these three
parameters to mathematically represent chemical reactions through what are
called mass-action kinetics [9].

Definition 0.1. Mass-action Kinetics states that the rate of a chemical
reactions is proportional to the concentration of the reacting species.
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Let c(t) = (c1(t), ..., cs(t)) be concentration vectors of all the species in a
chemical reaction, kij be the rate constants involved in the chemical reac-
tions, and yi be a vector representing the presence of each species in the
reactants or products. Then the concentration vector evolves from the fol-
lowing differential equations:

dc

dt
=

∑
yi→yj

kijc
yi(yj − yi)

Example 0.1. S0 + E
k1


k2
X

Using the above definition of mass-action kinetics, the corresponding differ-
ential equations for this simple reaction is:

dcS0

dt
= −k1cS0cE + k2cX

dcE
dt

= −k1cS0cE + k2cX

dcX
dt

= k1cS0cE − k2cX

After representing a biological process as chemical reactions and trans-
forming that information mathematically, the next step is to find an equilib-
rium state.

Definition 0.2. An equilibrium state is the state of a system when none
of the species’ concentration are changing. An equilibrium state or steady
state is a unique solution of concentration vectors, (c∗1, c

∗
2, ..., c

∗
i ) that satisfies

the system of equations when all
dci
dt

= 0.

Definition 0.3. A chemical reaction network admits multiple steady states
is there exist rate constants k′ijs ∈ R>0 whose resulting system admits two
or more steady states i.e. two or more steady states.

This means for a system to be bistable, there must exist two unique
solutions, (c∗1, c

∗
2, ..., c

∗
i ) and (c∗∗1 , c

∗∗
2 , ..., c

∗∗
i ) that satifies the system when all

dci
dt

= 0.

Theorem 0.1 (Joshi and Shiu 2013). A network with inflows/outlows admits
multiple seady states if and only if some embedded subnewtork admits multiple
steady states.
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From this theorem, I can remove portions of Fouchet and Regeos’ original
model and analysis the smaller model for their steady states. If that smaller
embedded subnetwork is bistable then any network that includes that smaller
network will also be bistable. Therefore if one of the smaller networks that
I will analyze is bistable, then I have found the cause of the bistability in
the larger network. The goal is to use this theorem in order to gain further
insight on the biology by analyzing the mathematics of the model.

The model Fouchet and Regeos proposed for self vs. nonself tolerance was
first illustrated by Powrie and Maloy[8], represented by Figure 1

Figure 1: Immune System Network
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The corresponding system of ordinary differential equations that describes
this system is:

dX

dt
= πX −mxX − kTeX, (1)

dA0

dt
= πA − τapXA0 −mAA0, (2)

dA1

dt
= τapXA0 + τrTrA2 − [τaeTe + τapX]A1 −mAA1, (3)

dA2

dt
= − τrTrA2 + [τaeTe + τapX]A1 −mAA2, (4)

dTp
dt

= πp −mpTP − φA2Tp − φA1Tp, (5)

dTe
dt

= φA2Tp −meTe − λrTrTe, (6)

dTr
dt

= φA1Tp −mrTr. (7)

where the biological meaning of the rate constants are:

Parameter Symbol
Inflow of antigen πX

Outflow of antigen mX

Death rate of precursor T cells mp

Decay rate of effector T cells me

Decay rate for Treg cells mr

Birth rate of APCs πA
Death rate of APCs mA

Killing rate for effctor T cells k
Activation rate of APC by antigen τap

Reactivation rate of APC by effector T cells τae
Differentiation rate of precursor T cells φ

Inhibition rate of effector T cells by Treg cells λr
Inhibition rate of APCs by Treg cells τr
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Results

How I create the subnetworks are important. I want the subnetworks to
retain some biological significance therefore I defined biological significance
as interactions between cell lines. This means in each subnetwork there must
be interactions between APCs and some type of T cell. If there were no
interactions, then the different types of cells would not evolve and no immune
response could ever happen. Therefore I must restrict any subnetwork to
have these types of interactions in order to preserve some sort of biological
significance.

Looking at the main block of interactions, it is easy to see that four types
of cells are important in this model: resting APC, activated APC, regulatory
T cell, and effector T cell. Therefore I will start with four cases where I
ignore one of these types of cells while considering the resulting interactions
between the cell types.
These four cases can be described picturaly as:

(a) Case 1: Subnetwork of all
APCs and effector T cell inter-
action

(b) Case 2: Subnetwork of all
T cell interaction with only ac-
tivated APC

(c) Case 3: Subnetwork of all
T cells interactions with resting
APC

(d) Case 4: Subnetwork all
APCs and only regulatory T
cell

Figure 2: Case Study: the dashed lines represent inhibitory effects. If two
lines come together then it indicates mass-action between the two reacting
species. The letters above each line represent the rate constants for each
chemical reaction
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Next I used CoNtRoL, a web-based application which performs dynamic
analytics on an inputted chemical reaction network. After inputting the
previous cases into CoNtRoL, only Case 3 and Case 4 had the possibility
of positive multiple equilibria. This possibility only occured when using
power-law kinetics not mass-action kinetics. Power-law kinetics is different
from mass-action kinetics with regard to stoichiometric equivalents of the
reactants involved in the chemical reaction. In power-law kinetics there is
no restriction of stoichiometric equivalence. There could be 1 stoichiometic
equivalence of one reactant and 0.67 of the other reactant and the reaction
could still hold. In mass-action, the stoichiometric equivalence must be 1:1
or any interger multiple of that ratio.

Nevertheless, CoNtRoL indicated that neither Case 1 nor Case 2 had the
possibility of bistability, so there is no need in analyzing these cases further.
The interesting outcome was that only two cases involving regulatory T cells
and resting APCs interactions, Case 3 and Case 4, had the possibility of
bistability.

Now I have to create a system of equations that describe both Case 3
and Case 4 and analyze them separately in order to see if these systems are
indeed bistable.

I will start with Case 3. I will be changing the names of the species:
A = APCresting, B = Tp, C = Treg, D = Teffector. The corresponding sys-
tem of differential equations are as follows:

Ȧ = k −mAB (8a)

Ḃ = p− nB −mAB (8b)

Ċ = mAB − oCD (8c)

Ḋ = nB − oCD (8d)

Since we are solving for steady states all of the differential equations are
equal to 0. Now all of the species are fixed concentrations and are no longer
changing, so the equilibrium state is defined by a“ *” next to the species.
Therefore looking at Ȧ:

k = mA∗B∗ ⇒ A∗ =
k

mB∗
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Looking at Ḃ we get:

p = B∗(mA∗ − n)⇒ B∗ =
p

mA∗ − n
⇒ B∗ =

pB∗

k − nB∗

Replacing B∗ with x, the polynomial equation that describes the function of
B∗ is nx2 + (p− k)x = 0. This is a simple quadratic that always crosses the
x-axis at x=0 and some other point based on the values of n, p, and k. But
for the equilibrium state to be biologically relevant, x must be a positive real
number when it crosses the x axis. There are only two cases when this can
occur. If n > 0 then p < k, and if n < 0 then k < p. However n can’t be
negative, because a rate constant is never a negative real value. Either way,
B∗ can only admit one positive real solution.

Looking at Ḋ we have:

nB∗ = oC∗D∗ ⇒ D∗ =
nB∗

oC∗

B∗ can only be a unique positive solution so D∗ is a function of C∗ and
vice-versa. There is no way to pin point which value D∗ will be theoretically.
Therefore I used Matlab’s fsolve function to solve the system of equations
described in equations (8a)-(8d) under the condition n > 0, and p < k.
I used many different intial conditions but the resulting equilibrium state
was always the same. The only unique equilbrium state was located at
(A∗, B∗, C∗, D∗) = (1.59, 1.25, 0.5, 0.9). The result of my analysis for this
subnetwork is that there is no possibility of bistability using mass-action ki-
netics.

With Case 4, I changed the names of the species: A = APCresting, B =
Tp, C = Treg, D = Teffector. The corresponding system of differential equa-
tions are:

Ȧ = k +mBD − lA− qAC (9a)

Ḃ = lA−mBD (9b)

Ċ = r − qAC (9c)

Ḋ = qAC −mBD (9d)
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Just like the analysis in Case 3, solving for the equilibrium states involves
setting all the differential equations equal to zero and trying to find explicit
values for each species.

Ċ + Ḋ : r = mB∗D∗ ⇒ B∗ =
r

mD∗
,

Ḃ : lA∗ − r = 0⇒ A∗ =
r

l
,

Ċ : r = qAC∗ ⇒ r = q
r

l
C∗ ⇒ C∗ =

l

q
,

Ȧ : k − lA− Ḋ ⇒ k − lA∗ = 0⇒ A∗ =
k

l

Therefore, for the system to have any equilibrium state, the two rate con-
stants k and r must be equal to each other. Since there is a conservation
relationship in this system we can analyze B∗ and D∗. A conservation re-
lationship is when the change in concentration of multiple species add up
to a constant. This means that the concentration of certain species remain
constant throughout the time of the reaction. The conservation realtionship
in this system is Ȧ+ Ḋ − Ḃ.

From Ḋ, we know qAC = mBD, and from Ċ we know the r = qAC. There-
fore r = mBD and we can rewrite Ḃ = lA−r. Remembering that k = r is the
condition that must hold in order to have any equilibrium states, Ḃ = lA−k.
Thus it is easy to see that

Ȧ+ Ḋ − Ḃ = 0

Since this conservation relationship is true at all times, A+D−B = constant.

However at equilibrium this equation turns into:

constant︷︸︸︷
A∗ +D∗ −B∗ = 0

A∗ is a constant, equal to
k

l
, therefore B∗ − D∗ = constant. We know

that B∗ is inversely related to D∗ for all possible values of D∗, and vice-
versa. However if we fix the constant that B∗ −D∗ is equal to, then we can
explicitly find the equilbirum values for B∗ and D∗.
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Figure 3: B∗ as a function of D∗ (black graph) with A∗,C∗ fixed and different
constant values where chosen for B∗ −D∗ = constant (red graphs)

As shown in Figure 3, no matter what constant values are chosen for what
B∗−D∗ is equal to, there can only be one unique equilibrium state for both
B∗ and D∗. Since A∗ and C∗ are explict solutions based on rate constants
and the concentration of what B and D cannot equal two different values at
one time, there can only be one unique equilbrium state for this subnetwork.

Therefore I have shown that in all four cases of subnetworks that retain
biological meaning, the two that had the possibility of bistability actually
can not admit bistability.

Discussion

Recall Theorem 0.1, it requires that any embedded subnetwork include all
inflows and outflows in order for the theorem to apply. I however, did not
include outflows in any of my subnetworks. The reason behind this is be-
cause when I included outflows from every species in my subnetworks, the
possibility of bistability was lost in Case 3 and Case 4, based on CoNtRoL’s
analysis. Therefore if I included outflows in any of my models, then I would
have no intital guess on which subnetwork to start my analysis. This is in ac-
cordance to recent findings on the subject, because the addition of arbitrarily
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small inflows and outflows has been shown to lose bistability in a chemical
reaction network[2]. Since others have proved that adding in small amounts
of outflows would cause the network to lose its ability to be bistable, I ig-
nored outflows until I could find the cause of the bistability. Then once that
was found, I would add them back in in order to analyze the subnetworks
corectly. Interestingly enough, this was not necessary, because none of my
subnetworks admitted bistability without outflows.

This result disproves my intuition and motivation of my research. I wanted
to find a reason why the original Fouchet and Regeos model was bistable and
in doing so I would be able to gain further insight on the role of regulatory
T cells interactions. However, my research has shown that using the subnet-
work approach to find the cause of bistability only disproves bistability in
each subnetwork. Although this is not what I had indended to find, results
are nevertheless results whether “good” or “bad”. Though my research was
counterintuitive in nature (usually these types of equilibrium analysis are
straighforward with the result being an explicit solution to what is trying to
be proved), it has a positive repercussion. In a sense, my analysis validates
the original model from Fouchet and Regeos as being the most concise and
precise system of equation that describes the role of regulatory T cells in
self vs. nonself tolerance. Since each subnetwork could not admit bistabil-
ity, every interaction and cell type from the original model is necessary in
order for bistability to occur. This means that any future model used to de-
scribe tolerance should include all of the cells, and interactions that Fouchet
and Regeos outlined in their paper. When a new mathematical model is
introduced, the biology is deemed so grand that extraneous species and cell
interactions are usually added into the model. Although my intial inten-
tion was not to prove the Fouchet and Regeos model, it turned out that my
research does indeed validate the correctness and succinctness of their model.

As a side note, I thought that the naive APC cell type was unecessary when
I first looked at the Fouchet and Regeos model. I could not mathematical
take out the naive APC from the original system of equations and have the
resulting system describe the same biology. I thought of the inflow into the
naive APC and the outflow of the naive APC into the resting APC as one big
inflow. This technique could not be substituted into the system of equation,
because of the mass action term of the pathogen exposure and naive APC.
Notice that all of my subnetworks do not include naive APC. I did initially
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have subnetworks with them involved, but the results from CoNtRoL were
the same. Only Case 3 and Case 4 with naive APC could have the possibility
of bistability, thus in order to find the smallest or minimal embedding net-
work, I left out the naive APC from my subnetworks. I leave it to the reader
to find a way to reduce the original Fouchet and Regeos model by taking out
the naive APCs, because it does not seem to have any effect of the bistability
or the presence of equilibrium values.
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