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Abstract

In the process of pursuing a finite field analogue of Descartes’ Rule,
Bi, Cheng, and Rojas (2014) proved an upper bound of 2

√
q − 1 on the

number of roots of a trinomial c1 + c2x
a2 + c3x

a3 ∈ Fq [x], conditional
on the exponents satisfying δ = gcd(a2, a3, q − 1) = 1, and Cheng, Gao,
Rojas, and Wan (2015) showed that this bound is near-optimal for many
cases. Our project set out to refine these results by finding new bounds
and extremal examples for cases not yet explored. We construct a class
of extremal examples having

√
q roots on fields with q an even power of a

prime, by using linear maps with large null spaces over Fq. Additionally,

we present a new upper bound of 1+
√
4q−7
2

for all q under the same con-
straints as before, using an alternate method involving reduced trinomials
with disjoint root sets, which establishes the examples as maximal. Our
methods offer several possible generalizations to other cases.

1 Background and Objectives

Sparse polynomials, which have a fixed number of terms, regardless of their
degree, often have much lower maximum numbers of roots than general polyno-
mials over the same field. For example, over the real numbers, Descartes’s Rule
states that a polynomial with t nonzero roots must have less than 2t real roots.
This bound is sharp; for example, the polynomial x(x2−1)(x2−2) · · · (x2−(t−1))
has t terms and 2t− 1 roots [2].

Our current work is part of an effort to formulate an analogous rule for finite
fields Fq. We define a univariate t-nomial as f(x) = c1 + c2x

a2 + · · · + ctx
at

with a2 < · · · < at < q − 1, and for such f we define δ = gcd(a2, . . . , at, q − 1).
Bi, Cheng and Rojas (2014) recently showed that the nonzero roots of t-nomials
over Fq display a peculiar multiplicative structure: they can be partitioned into
cosets of two subgroups of F∗q , whose number and size are predictable based on
q, t, and δ.

Theorem 1.1 (Thm. 1.1 in [1]). The nonzero roots of a univariate t-nomial

as defined above are the union of at most 2
(
q−1
δ

) t−2
t−1 cosets of two subgroups

S1 ⊆ S2, with |S1| = δ and |S2| ≥ δ
(
q−1
δ

) 1
t−1 .
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Additionally, their proof shows that, in the case of trinomials (t = 3), all
cosets are of the first size, δ, which implies an upper bound on the root count
of 2

√
δ(q − 1).

Cheng, Gao, Rojas, and Wan (2015) also provided asymptotic lower bounds
for the maximum number of roots of trinomials satisfying δ = 1 on fields of
various degrees. On fields whose orders are cubes (q = p3n), they succeeded
in producing examples with q1/3 + 1 roots, which is reasonably close in growth
order to the upper bound of O(q1/2). However, on other fields, their bounds are
sub-logarithmic, and in their strongest form rely on the Generalized Riemann
Hypothesis.

We set out to refine these existing results by exploring a little-studied case,
that of quadratic fields (q = p2).

Our main tasks in pursuit of this goal were the following:

1. Conduct limited computational experiments to gather data on the root
counts of trinomials on Fp2 , as none have been conducted yet. Observe
patterns in the data and propose conjectures about the numbers of roots.

2. Attempt to produce new extremal trinomials, to establish a higher lower
bound on the maximum root count.

3. Prove stronger asymptotic or exact bounds on root counts if possible.

2 Summary of Results

Our first main result was the existence of a family of extremal trinomials on
quadratic fields. We later determined that it could in fact be extended to any
field of even degree, and this is the version that is presented here. This example
is not unique; we can apply a variety of transformations of the exponents and
coefficients to generate a broad class of extremal trinomials.

Theorem 2.1. On a finite field Fq with q = p2k for k a natural number and p
an odd prime, the trinomial

xp
k

+ x− 2

has exactly pk =
√
q nonzero roots.

Our second round of computational experiments suggested that this number
of roots is in fact maximal for δ = 1. We succeeded in proving this.

Theorem 2.2. On any field Fq, if a trinomial

f(x) = 1 + c2x
a2 + c3x

a3

satisfies δ = gcd(a2, a3, q − 1) = 1, then it has no more than
√
4q−7+1

2 nonzero
roots. In the case that q is an even power of a prime number p, the greatest
integer less than or equal to this upper bound is exactly

√
q.
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These two results taken together establish an exact upper bound on the
number of roots of trinomials with δ = 1 on even-degree fields, including the
quadratic fields we set out to study. Additionally, on odd-degree fields, Theorem
2.2 provides an improvement on the existing upper bound of 2

√
q − 1.

3 Computational Data

Our computational work was relatively small in scale, covering few fields, since
the size of successive quadratic fields grows very quickly. Nevertheless, we man-
aged to amass enough data to motivate useful and provable conjectures.

3.1 Design

Our first task was to find ways to reduce the number of trinomials that we
needed to solve without losing information, since the full set of trinomials

c1x
a1 + c2x

a2 + c3x
a3 ∈ Fp2

grows in size as Θ(p12). We succeeded in making three restrictions.

• A trinomial may be multipled or divided by a power of x without changing
its number of nonzero roots. Therefore, we may assume a1 = 0.

• A trinomial may be multiplied or divided by a constant without changing
its number of roots. Therefore, we may assume c1 = 1.

• If f has a root z 6= 0, then transforming it by substituting x 7→ zx yields
a trinomial with the same number of roots, and 1 as a root. Therefore,
we may assume c1 + c2 + c3 = 0.

In addition, we decided to limit a2 = 1. We have no theoretical basis for this
move, but based on limited inquiry into the case a2 = 2, we believe it to have
minimal impact on our data, and in any case this is the procedure followed by
our colleagues. As a result, we need only search

cxa3 − (c+ 1)x+ 1,

and there are only Θ(p4) of these.
Our final observation was that, all else being equal, substituting a3 7→ q−a3

does not change the number of roots, so checking a3 > q/2 is unnecessary. This
does not provide any improvements in growth order, but does cut the number
of cases in half, which at the small scale of our experiments is fairly significant.

• On the first four odd-ordered fields (F9,F25,F49,F121), we gathered com-
prehensive data, writing down the root counts for every reduced trinomial,
with all possible exponent pairs. This data motivated Theorem 2.1.
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• On the odd-ordered fields below 100, we recorded possible root counts
with sample trinomials, for all reduced trinomials with linear terms (as
well as more limited data for reduced trinomials with quadratic terms).
This data suggested Theorem 2.2, which we succeeded in proving shortly
afterward.

• On the odd-ordered fields below 500, we recorded possible root counts for
reduced trinomials with linear terms, as well as the lowest degree at which
each root count appeared.

4 Proofs of Main Results

4.1 Extremal Trinomials

Our current proof of Theorem 2.1 relies on linear-algebraic techniques: the
extremal examples provided are translations of linear maps with large null-
spaces on Fq.

Proof of Theorem 2.1. Observe that the function

T (x) = xp
k

+ x

is an Fpk -linear map from Fq to Fq: Since p is the characteristic of Fq, we have
that (x+ y)p = xp + yp (which extends to all powers of p) and since all a ∈ Fpk
satisfy ap

k

= a, we have (ax)p
k

= a(xp
k

). T (x) has as zeros all the solutions

of xp
k−1 = −1, and since (−1)

q−1

gcd(q−1,pk−1) = 1, such solutions exist and are
nonzero, so its null space has positive dimension. However, T (x) is also not
uniformly zero, as, for example, T (1) = 2, so its null space’s dimension is not
2. We conclude, therefore, that the T (x) has a null space of dimension 1, and
therefore that it has pk zeros.

We see that f(x) = 0 exactly when T (x) = 2. Since we know that T (1) = 2,
we can then observe from the linearity of T that T (x) = 2 exactly when x = z+1
for T (z) = 0. Therefore, f(x) has pk =

√
q roots, all of which are nonzero.

Remark. The construction is slightly different for q a power of 2. In that case
2 ≡ 0, and therefore f(x) is a binomial and has a root of zero. However, it is
a simple matter to translate T (x), which is still a rank one linear map, by a
different, nonzero element from its range.

4.2 The Upper Bound

Our central tool in this proof is our ability to reduce the trinomials in Fq [x]
with a given support into a more restricted family that preserves its variety of
root counts.

Definition 4.1. For a2, a3 fixed, define the family of trinomials in Fq [x]

C(a2, a3) = {fc(x) = 1− (c+ 1)xa2 + cxa3 |c 6= 0,−1.}
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Observe that C(a2, a3) is exactly the set of trinomials with support {0, a2, a3}
and constant term 1 having 1 as a root: f(1) = 0 if and only if its coefficients
sum to zero. As we showed in explaining our computational experiments, every
trinomial may be transformed into one of this form having the same number of
roots.

This family also has another, very useful property.

Lemma 4.2. For gcd(a2, a3, q− 1) = 1, every x0 6= 1 in F∗q is a root of at most
one distinct fc ∈ C(a2, a3).

Proof. fc(x0) = 0 is equivalent to the following linear equation in c:

c(xa30 − x
a2
0 ) = xa20 − 1.

For all x0 such that xa30 6= xa20 , this trinomial may be solved for c; if c 6= 0,−1,
then this is the unique c for which fc(x0) = 0, and otherwise no such fc exists.

On the other hand, when xa30 = xa20 , the left-hand side is zero, and the
equation is either true for all c or for no c. It is true for all c if and only if
xa20 = 1 as well. Since gcd(a2, a3, q−1) = 1, the only x0 satisfying xa3 = xa2 = 1
is 1, so, because x0 6= 1, we conclude that the equation holds for no c and these
x0 are roots of no fc.

The fact that the root sets of all of C(a2, a3) cannot overlap suggests a bound
of some sort on the root count of any individual polynomial, and that bound is
in fact Theorem 2.2.

Proof of Theorem 2.2. It suffices to prove that all fc ∈ C(a2, a3) have at most√
q roots.

Assume that some f1 ∈ C(a2, a3) has r roots: 1, z2, . . . , zr, and let fi =
f1(zix) for 2 ≤ i ≤ r. Each fi has r roots and belongs to C(a2, a3). Additionally,
we can show that all are distinct: f(zx) = f(x) iff za3 = za2 = 1, and since
δ = 1, that occurs only when z = 1. Finally, by Lemma 4.2, the only root
shared between any two fi is 1. Therefore, among them, the fi have r(r−1)+1
distinct roots. The set of these roots is a subset of F∗q , so it must be true that:

r2 − r + 1 ≤ q − 1

which may be solved to give

r ≤
√

4q − 7 + 1

2
.

Additionally, assume
√
q ∈ N. We may see fairly easily that, if r =

√
q,

the original inequality is satisfied for q ≥ 4, which covers all relevant cases, but
r =
√
q + 1 implies that r is negative, which is a contradiction. Furthermore,

since r2 − r+ 1 is an increasing function on positive r, we can surmise that the
inequality is not satisfied for any higher r.
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5 Further Conjectures

Based on the data we gathered, we also made a few other observations that we
were not able to prove. We present them here.

Conjecture 1. Without restrictions on δ, the maximum number of roots of a
trinomial on Fq with q = p2 for an odd prime p is 2

3 (q − 1).

We have an example of a trinomial with this many roots, namely, f(x) =

(x
1
3 (q−1) − a)(x

1
3 (q−1) − b) for a3 = b3 = 1, a 6= b. This relies on the fact that

p2 − 1 is always a multiple of 3.

Conjecture 2. The upper bound supplied by Theorem 2.2 is not sharp for odd-
degree fields.

In these cases,
√
q is not an integer, and thus no analogue to the trinomials

of Theorem 2.1 can be constructed.

Conjecture 3. If a trinomial on Fq with δ = 1 attains a given root count, the
same root count is attained by some trinomial with a2 = 1.

As mentioned before, our experiments assumed this to be the case, but we
have had no success in proving it.
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