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ABSTRACT. Given an intersection pattern of open sets in Euclidean space, is it possible to tell
if there is an arrangement so that the open sets are convex? This problem that can be classified
as combinatorial/topological in nature, but surprisingly appears as a mathematical model for
spatial cognition motivated by research in neuroscience on place cells in the brain (where the
intersection patterns are denoted as “neural codes”). We prove that the notions of a neural code
being locally good and a good cover code are in fact equivalent, and that the corresponding
decision problem is undecidable. We also present a new type of local obstruction to convexity
by considering collapsibility of links of missing codewords.

1. INTRODUCTION

The discovery of place cells by O’Keefe et al in 1971 was a major breakthrough in the field
of neuroscience that led to a Nobel Prize in Medicine or Physiology in 2014 [6]. A place cell
is a neuron that encodes the spatial information of an organism’s surroundings by firing only
when the organism is in a place field, which can be modeled by a convex open set. These
place fields thus form an open cover of the organism’s surroundings. One can describe the
intersection patterns of n sets by a subset of {0, 1}n, where the ith coordinate represents the
binary state of neuron i, which fires if and only if the organism is in the corresponding place
field. Such intersection patterns have been coined combinatorial neural codes, which we will
abbreviate as “neural codes,” or when it is clear, just “codes.” Each binary vector in such a
neural code is called a codeword. Because codewords are binary vectors, they can be uniquely
represented by their support as a subset of [n] = {1, ..., n}. Now given a (finite) collection of
open sets in Euclidean space, it is straightforward to find the corresponding neural code that
describes the intersection patterns of these sets. If we were to restrict the properties of the open
sets (say, to require all sets to be convex), then the inverse problem of determining whether such
an arrangement of open sets even exists is of particular interest. Indeed, intersection patterns of
convex sets have been discussed in detail when the intersection patterns are precisely a simplicial
complex (see [7] for an overview), but this more specific case has only caught attention recently.

2. BACKGROUND

Here we introduce some notation as well as basic definitions associated to the theory of neural
codes. We will denote [n] = {1, ..., n}. We will reserve lowercase Greek letters to always be
a subset of [n] for some n, which usually refers to either a codeword in a neural code or a face
in a simplicial complex. For shorthand, however, we will omit the braces and commas (e.g. if
τ = {1, 2, 3} and σ = {2, 3, 4} we write τ = 123, σ = 234, τ ∩ σ = 23). Additionally, given a
collection of sets U1, ..., Un, we define Uτ =

⋂
i∈τ Ui.

2.1. Basic Definitions. Consider a collection U = {U1, ..., Un} of open sets in Rd, correspond-
ing to locations where a neuron will fire.
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FIGURE 1. A realization of the code C = {123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4, ∅}.

Definition 2.1. A neural code C on n neurons is a subset of 2[n] 1, and each σ ∈ C is called a
codeword. Any codeword that is maximal in C with respect to set inclusion is a maximal codeword.

Definition 2.2. A code C is realized by open sets U = {U1, ..., Un} if

σ ∈ C ⇐⇒ Uσ \
⋃
j /∈σ

Uj 6= ∅. (2.1)

Conversely, given a collection of open sets U , the corresponding unique code that is realized by
U will be denoted C(U).

We note that in general any neural code can be realized by open sets. However, if we put
more constraints on the open sets U , then we can ask more interesting questions. The following
are several properties of neural code that are of particular interest:

Definition 2.3. A neural code C is said to be
• convex if C can be realized by convex open sets U .
• a good cover code if C can be realized by contractible open sets U such that any inter-

section of sets in U is also contractible. Such a U is called a good cover.
• max-intersection complete if C is closed under taking intersections of maximal code-

words.
• k-sparse if for all σ ∈ C, |σ| ≤ k.

Example 2.4. The codeword C = {123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4, ∅} is 3-sparse, has
maximal codewords 123 and 234, and is realized in R2 above in Figure 1. C is convex (and
therefore a good cover code) and max-intersection complete since 123∩234 = 23 is a codeword
in C.

Definition 2.5. An abstract simplicial complex ∆ on n vertices is a subset of 2[n] that is closed
under taking subsets. Each σ ∈ ∆ is called a face of ∆. We can topologically realize any
simplicial complex in Euclidean space of sufficiently high dimension.

Given a simplicial complex ∆, we will always use |∆| to refer to the topological realization
(which is unique up to homeomorphism). For σ a face in ∆, we use [σ] to refer to the topological
realization of σ as a simplex contained in |∆|. We define ∆(C) of a code C to be the smallest
simplicial complex containing C, which is uniquely defined by the maximal codewords of C
(which are the maximal faces, or facets, of ∆(C)).

Definition 2.6. The link of a face σ in a simplicial complex ∆ is defined as

Lkσ(∆) = {τ ∈ ∆ | σ ∩ τ = ∅ and σ ∪ τ ∈ ∆}.
Note that σ ∪ τ ∈ ∆ is the same as saying that σ ∗ τ ⊆ |∆|, where ∗ is the the topological

join. We will only refer to the link in a topological sense, so Lkσ(∆) is a subset of ∆.
A closely related notion to ∆(C) is the nerve of a covering.

1We will follow the simplifying convention that the empty codeword is always in a neural code.
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FIGURE 2. The code C = {12, 23, 1, 2, 3, ∅} is convex and a good-cover code.
Its topological simplicial complex, |∆(C)|, is realized below.
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FIGURE 3. The link of the green vertex in the simplicial complex on the left is
shown on the right in blue.

Definition 2.7. Given a collection of sets U = {U1, ..., Un}, the nerve of U , denoted as N (U),
is the simplicial complex ∆ where

σ ∈ ∆⇐⇒ Uσ 6= ∅

with the exception of ∅, which by definition is always in ∆.

Remark 2.8. N (U) = ∆(C(U)).

The classical result referred to as the nerve theorem or nerve lemma, is a nice property of the
nerve of an open covering that we will state in a more specific setting.

Theorem 2.9 (Nerve Theorem, [10]). Given a finite collection of open sets U in Euclidean space
where each set and intersection of sets is either empty or contractible, the union of all sets in U
is homotopy equivalent to N (U).

2.2. Local obstructions and criteria for convexity. One way to detect non-convexity in a
neural code is through the existence of what are known as local obstructions.

Definition 2.10. Given C a code on n neurons, we define a local obstruction to be a pair (σ, τ)
satisfying

Uσ ⊆
⋃
i∈τ

Ui

where τ 6= ∅ and Lkσ(∆(C)|σ∪τ ) is not contractible.

The reason local obstructions are named as such is due to the following result, proved by
Curto et al. in [1].

Theorem 2.11. If C has a local obstruction, then C is not a good cover code, and therefore not
convex.
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Now if a code C has no local obstructions, we say that it is locally good. The next theorem
gives a much more efficient way of characterizing local obstructions. As it turns out we only
need to check the link of faces that are intersections of maximal faces with respect to ∆(C) as a
whole.

Definition 2.12. Given a simplicial complex ∆, we defineM(∆) = {σ ∈ ∆ | Lkσ(∆) is not
contractible }.M(∆) is called the set of mandatory codewords for any C such that ∆(C) = ∆.

Theorem 2.13. Let C be a code. C is locally good if and only if it contains all its mandatory
codewords. Furthermore, every mandatory codeword is an intersection of maximal codewords.

See [1] for a detailed proof.

Corollary 2.14. Max-intersection codes are locally good.

In fact, max-intersection codes are convex, a result that was proved in [3].
Now Theorem 2.8 tells us that

C is convex ⇒ C is a good cover code ⇒ C is locally good, (2.2)

and it is natural to ask whether the converse of either implication could be true. Lienkaemper
et al. gave the first known counterexample to the conjecture that convex codes are locally good
in [5].

Theorem 2.15. The neural code C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅} is locally
good and nonconvex.

We will discuss this counterexample in more detail later in Section 5, as it turns out this
is realizable if we use closed sets instead of open sets. We prove the converse to the latter
implication of (2.2) in the next section.

We state one final result that for codes with the same simplicial complex, convexity is a
monotone property with respect to inclusion.

Theorem 2.16. If C is convex, and C ⊆ C′ where ∆(C) = ∆(C′), then C′ is convex.

This is proved in [3].

3. LOCALLY GOOD CODES AND GOOD COVERS

In this section we will prove that the notions of being locally good and a good cover code
are equivalent. To sketch the idea, we will be considering a generalization of |∆(C)| where all
codewords in ∆(C) but not in C correspond to a deleted “open face” in ∆(C).

We define the code complex of a code C, |C|, to be a modification of |∆(C)| by deleting the
interiors of faces of codewords not in C. Recall that [τ ] denotes the topological realization of τ
as a closed simplex of dimension |τ | − 1 that is contained in |∆|. Similarly, we define (τ) to be
the interior of the topological space [τ ]. In particular, (τ) is a point if |τ | = 1 and homeomorphic
to the the open ball of dimension |τ | − 1 otherwise. Now we formally define the code complex
to be

|C| = |∆(C)| \
⋃

τ∈∆(C)\C

(τ).

For example, the code complex of C = {123, 12, 23, 1, 2, ∅} is a 2-simplex with a point and an
open edge missing, where the missing point corresponds to the lack of the codeword 3 and the
missing edge corresponds to the lack of the codeword 13. It should be clear that |∆(C)| = |C|.
We also note the following
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Remark 3.1. |C| =
⊔
σ∈C(σ). That is, even though we defined |C| by deleting faces, it can

also be built from the disjoint union of all the faces in C in the manner that a CW-complex is
constructed.

The proof of the main theorem has two main steps. The first is to generate a realization of
C with sets V = {V1, ..., Vn} where V is an “almost good cover” in the sense that the sets are
not necessarily open (but still have empty or contractible intersections). We then show how this
construction extends naturally to a good cover realization with open sets.

Theorem 3.2. A code is locally good if and only if it is a good-cover code.

Proof. The backwards direction is already established (Theorem 2.8), so we will prove the for-
ward direction.

Let C be a locally good code on n neurons. First, we will give a realization of C with sets
V1, ..., Vn that are not necessarily open, but satisfy Vτ being either empty or contractible for all
τ ⊆ [n].

As |C| is the union of all open faces (τ) where τ ∈ C as noted in in Remark 3.1, we set

Vi =
⋃

τ∈C,i∈τ
(τ).

For each τ ⊆ [n], we now need to check that Vτ is either empty or contractible. If Vτ is
nonempty and τ ∈ C, Vi can deformation retract to (τ), which is contractible. It remains to
check the cases when Vτ is nonempty and τ /∈ C. First note that because C is locally good,
then for any such τ , Lkτ (∆(C)) is contractible. Now if τ was the only codeword in ∆(C) \ C,
our code complex |∆(C) \ τ | is exactly |∆| \ (τ), and it is clear that Vτ deformation retracts to
Lkτ (C) which is contractible. In the general case, however, we note that other open faces could
be missing, including faces in the link. Luckily, it is the case that given a contractible simplical
complex and faces τ1, ..., τn where deleting any single one of the open faces (τi) preserves
the homotopy type, we can remove all such open faces together from the simplicial complex
while preserving the homotopy type, a fact that we relegate to Lemma 3.3. From this, we have
completed the first step of the proof of achieving a non-open good cover realization.

We now go from |C| to an actual good cover realization through a “reverse deformation re-
tract” of |C| in the following way. First, we realize our code complex |C| (which is a union of
Vi’s as described above) as a subset of the n-simplex in Rn. Now each maximal face (of which
there are n + 1) of the simplex uniquely defines a hyperplane of dimension n − 1. Moreover,
the n+ 1 hyperplanes partition Rn into 2n−1 regions, namely the interior of the n-simplex and
regions that deformation retract onto each open face of the n-simplex. Letting Rτ be the region
that deformation retracts onto (τ), we can set

Wi =
⋃

τ∈C,i∈τ
Rτ .

Now we take Ui to be the interior of Wi, as Wi may have limit points (see Figure 4). U1, ..., Un
is thus a good cover realization of C. Additionally, if we wanted the sets to be finite, we could
intersect each Ui with an open ball (of fixed size) containing the entire n-simplex. It is easy to
see that each Uτ is homotopy equivalent to Vτ in our realization |C|, completing the proof of the
theorem. �

Lemma 3.3. Given a contractible simplicial complex |∆|, suppose we have a collection of faces
τ1, ..., τn where |∆ \ τi|2 is still contractible for each i ∈ [n]. Then |∆ \ (τ1 ∪ ... ∪ τn)| must
still be contractible.

2Note that we are taking ∆ \ τ as a neural code; by definition |∆ \ τ | = |∆| \ (τ).
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FIGURE 4. We show the correspondence between a 2-simplex and the regions
that deformation retract to the open faces that make up the 2-simplex. In partic-
ular, note thatR12 contains (12) andR1 contains the dashed lines and the vertex
(1) (making it in fact closed), which is why passing from Wi to its interior Ui
is usually necessary.

FIGURE 5. We start with a 2-simplex missing an open edge. We can defor-
mation retract this to the third figure, which then is homeomorphic to the 2-
simplex with the missing edge filled in. Note that if the 2-simplex was miss-
ing other open faces, the deformation retract/homeomorphism does not disturb
them since it passes only though the interior of the maximal face.

Proof. For any σ where |∆ \ σ| is contractible (note that σ cannot be a maximal face in ∆),
we describe the following “filling” procedure (see Figure 5 for an example). Let M1, ...,Mk

be the maximal faces of ∆ containing τ . We let |Mi| denote the topological realization of each
face Mi as a simplex contained in |∆|, and denote bi,1, ..., bi,` be the barycenters of all faces
η in Mi such that σ ⊆ η. Let Dσ = conv(σ, bi,1, ..., bi,`)

3. There is a natural deformation
retract from |Mi| \ (σ) to |Mi| \Dσ

4, the latter of which also has an natural homeomorphism
back to |Mi|, “filling” up the deleted face (σ). We note that both the deformation retract and
homeomorphism passes through faces strictly larger than σ. Moreover, this filling procedure
can be done simultaneously with all Mi.

Now we take |∆ \ (τ1 ∪ ... ∪ τn)|, and without loss of generality suppose |τ1| ≥ |τ2| ≥ ... ≥
|τn|. We can fill in the deleted face (τ1) by the described deformation retract and homeomor-
phism without affecting any of the other τi’s, which gives us the homotopy equivalence

|∆ \ (τ1 ∪ ... ∪ τn)| ' |∆ \ (τ2 ∪ ... ∪ τn)|.

Repeating this n− 1 more times for the faces τ2, ..., τn gives a homotopy equivalence between
|∆ \ (τ1 ∪ ... ∪ τn)| and ∆, which we know is contractible. �

3conv is the convex hull
4|Mi| \Dσ is in fact the first barycentric subdivision of Mi with all sub-simplexes that have nonempty intersec-

tion with (σ) removed.
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FIGURE 6. V1, V2, and V5 are the closed line segments, while V3 and V4 are
the closed triangles in the above realization. This is a closed convex realization
of the counterexample code, C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅} [5].

4. NEURAL CODES AND COMPUTABILITY

Given this equivalence between being a good cover code and locally good (Theorem 3.2),
we now show that both are undecidable problems. The reduction is quite simple and hinges on
the undecidability of determining whether a homology ball (of sufficiently high dimension) is
contractible:

Lemma 4.1 (Tancer [8]). It is undecidable whether a given 4-dimensional simplicial complex
is contractible.

Theorem 4.2. The problem of deciding whether a 6-sparse code has a good cover is undecid-
able.

Proof. Given any 4-dimensional simplicial complex ∆, consider the cone over ∆ on a new
vertex v. This is itself a simplicial complex, which we denote by ∆′. Now let C be the 5-sparse
neural code ∆′ \ v. The only possible local obstruction is at v, so our code has a good cover
if and only if ∆ = Lkv(∆′) is contractible. Thus, any algorithm that could decide whether C
is locally good would also decide whether ∆ is contractible, which is impossible by Lemma
4.1. �

We note that it is decidable to tell whether a graph is contractible, so we can always tell
whether a 3-sparse code is locally good. The problem of whether we can lower the dimension
in Lemma 4.1 to 3 or 2 is still open (which would let us to drop the dimension in Theorem 4.2
to 5 or 4, respectively). One might ask in the case where C is a cone on a contractible simplicial
complex without the vertex like the one described in the proof, whether C is convex (if this
were the case, we would immediately get undecidibility of the convexity problem by the same
argument). This is not always the case, which we will see in the next section.

5. CLOSED CONVEX REALIZATIONS AND A NEW OBSTRUCTION TO CONVEXITY

In [5] the first counterexample to the conjecture that “Locally good codes are convex” is
given. The example in question, however, is realizable by convex closed sets as shown in Figure
6.

Note that in this case, there are sets that have measure zero, which is not possible in an open
realization. It would be natural for one to ask whether a locally good code might always have a
closed convex realization, but the answer again is no.

We present a new type of obstruction to convexity, that is, a code that is a good cover code
but not convex, even if we allow for closed realizations.
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Furthermore, the counterexample code in [5] could be resolved in two different ways, that is,
there are two distinct neural codes with the same simplicial complex as that of the counterex-
ample code with neither being contained in the other. We present a new family of locally good
nonconvex codes where each code C satisfies |∆(C) \ C| = 1, that is, it is missing only one
codeword from its simplicial complex. By the monotonicity property, this means any code with
the same simplicial complex as C must contain the missing codeword.

First we make note of an overloaded definition in the literature. The notion of a collapse of
a simplicial complex was first posed by Whitehead in [11]. The term of d-collpasibility was
coined by Wegner much later [9], and is a closely related idea.

Definition 5.1. Let ∆ be a simplicial complex and let M be its maximal faces. Now for any
face σ such that there is a unique τ ∈M where σ ( τ , we define

∆′ = ∆ \ {ν ∈M | σ ⊆ ν}

and say that ∆′ is an elementary collapse of ∆ induced by σ, and give it the notation ∆→ ∆′.
We call a sequence where

∆→ ∆1 → ∆2 → ...→ ∆n

a collapse of ∆ to ∆n. Moreover, ∆ is collapsible if it collapses to a point.

Definition 5.2. Let ∆ be a simplicial complex and letM be its maximal faces. For any face σ
such that there is a unique τ ∈ M where σ ⊆ τ (note the difference from Definition 5.1 here),
we define

∆′ = ∆ \ {ν ∈M | σ ⊆ ν}
and say that ∆′ is an elementary d-collapse of ∆ induced by σ (d refers to the constraint that
dim σ ≤ d, but we will not be concerned with any particular value of d here and let d be
arbitrarily high when we invoke the term “d-collapsibility”). We call a sequence of elementary
d-collapses starting with ∆ and ending with ∆′′ a d-collapse of ∆ to ∆′′.

While it may seem like a subtle difference between the two definitions above, it is important
to note that the homotopy type is preserved throughout a collapse, but not necessarily throughout
a d-collapse, as we see in the following lemma.

Lemma 5.3. Let ∆ be contractible and ∆→ ∆′ an elementary d-collapse induced by σ where
∆′ is nonempty. σ is a maximal face of ∆ if and only if ∆′ is not contractible.

Proof. We make use of the fact that a simplicial complex is contractible if and only if its fun-
damental group along with all reduced homology groups vanish. For the forward direction,
suppose that σ is a maximal face. [σ] ∩ |∆′| is the boundary of [σ], which is homeomorphic to
a sphere, and [σ] is naturally contractible because it is a simplex. Applying the Mayer-Vietoris
sequence for homology to |∆| = [σ]∪ |∆′|, we see that |∆′| must have a non-vanishing homol-
ogy group, and therefore cannot be contractible. On the other hand, suppose σ is not a maximal
face. Then it is not hard to see that [σ] ∩ |∆′| must be contractible, and Mayer-Vietoris tells
us that |∆′| must have vanishing reduced homology groups An analogous application of the
Seifert-van Kampen theorem tells us that the fundamental group of |∆′| must vanish as well, so
|∆′| is contractible. �

Corollary 5.4. The following are equivalent
(1) ∆ is collapsible.
(2) There exists a d-collapse of ∆ to a simplex such that none of the elementary d-collapses

are induced by a maximal face.
(3) There exists a d-collapse of ∆ to a simplex that preserves the homotopy type of ∆.
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While all collapsible simplicial complexes are contractible by definition, a counterexample
to the converse statement is any triangulation of the 2-dimensional topological space known as
“Bing’s house with two rooms.”

We can now prove the following theorem.

Theorem 5.5. Let Λ be a contractible simplicial complex. Set ∆ to be a cone of Λ over a new
vertex v and let C = ∆ \ {v}. If C is convex, then Λ is collapsible.

Proof. Let C be a convex code on n+1 neurons realized by sets U1, ..., Un, Uv, where U1, ..., Un
realize Λ (taken itself as a neural code). Now it is necessarily the case that Uv =

⋃
i∈[n] Ui.

Consider sliding a hyperplane along a line across the ambient space of the realization (where
U1, ..., Un are realized) and deleting everything on one side. We do this until an intersection
region corresponding to a maximal face in Λ has been removed. This deletion will remove a
maximal face in Λ, and in fact induces an elementary d-collapse Λ→ Λ′. By the nerve theorem
the homotopy type of Λ′ is the same as that of Uv with part of it deleted by the hyperplane.
Because the convexity of Uv is preserved when we delete part of it with the hyperplane sliding, it
remains contractible, so Λ′ is contractible. Repeating this hyperplane-sliding deletion procedure
until only a single maximal face in Λ remains induces to a d-collapse of Λ to Λ′′ where Λ′′ is a
simplex. Now the homotopy type of Λ is preserved throughout the d-collapse to Λ′′. Corollary
5.4 tells us that that Λ is collapsible, completing the proof. The explicit construction of sweeping
the hyperplane and the resulting d-collapse is given in [9] and elaborated upon in [7], so we will
not repeat the details. �

Example 5.6. Let ∆ be a cone over a triangulation of Bing’s house, which is a 2-dimensional
simplicial complex. Now take C to be ∆ missing the codeword corresponding to the vertex of
the cone. C is a good cover code but not convex.

The following strengthening of the previous theorem gives us a new class of local obstruc-
tions.

Theorem 5.7. For any convex neural code C where ∆(C) = ∆, if σ ∈ ∆ \ C, then Lkσ(∆) is
collapsible.

Proof. Suppose C is convex and we have σ ∈ ∆ \ C. In particular, it must be the case that Uσ is
convex. We note that Uσ =

⋃
τ)σ Uτ . Now consider the neural code C′ = {τ | σ ⊆ τ}. Such a

code must also be convex. Moreover, because each codeword in C includes σ, we can replace σ
with a vertex v. Now note that ∆(C′) is precisely a cone over Lkσ(∆(C)), and C′ = ∆(C′) \ v.
By the previous theorem, we have a contradiction. �

To make the distinction between the For any σ ∈ ∆(C) \ C such that Lkσ(∆(C)) is not
collapsible, we say that σ is a local obstruction of the second kind. Moreover, if C has no
local obstructions of the second kind, we say that C is locally great.

Remark 5.8. Theorem 5.7 still fails to give a sufficient condition for convexity, precisely by the
counterexample code from [5].

Remark 5.9. The question of whether a simplicial complex is collapsible is decidable, and is in
fact NP-complete in general [8].

As it turns out, our proof of the undecidability of the good-cover problem does not directly
extend to give us any results about the decidability of whether a code is convex, as we have
presented a strictly stronger criterion (than that of being locally good) of being locally great that
is in fact decidable.
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6. DISCUSSION

In summary, we now know the following:

C is convex ⇒ C is locally great ⇒ C is a good cover code ⇔ C is locally good.

In particular, it is undecidable to tell whether an arbitrary neural code C is locally good/a good
cover code, decidable to tell whether C is locally great, and the question remains open for
determining whether C is convex.

We note that based on Theorem 5.7, any code where the link of a missing face is not collapsi-
ble (but still contractible) requires that the code be at least 4-sparse, like the counterexample
code discovered in [5]. As we know that convexity is equivalent to being locally good for 2-
sparse codes, the question of whether 3-sparse locally good codes are convex remains open.
Indeed, it is not too hard to see that for C a 3-sparse code, the only mandatory codewords are
ones of size one, and that the links of any vertex in ∆(C) is a graph, where contractibility and
collapsibility are equivalent.

Neural codes have also been studied from an algebraic standpoint through neural ideals and
rings, which are closely related to the Stanley-Reisner ring/ideal of a simplicial complex [2].
Using these algebraic tools, it is possible to find local obstructions that can be detected by ho-
mology, which has sufficed to determine contractibility for small simplicial complexes. It may
be worthwhile to see if collapsibility can be characterized in a similar way, as unlike contractibil-
ity the former is decidable.

The decision problem of convexity is also still unresolved. Indeed, as being convex is a
stronger notion than being locally good, it is entirely possible that the decision problem of
determining whether a code is complex is decidable. It would also be interesting to investigate
how the theory changes when considering closed verses open realizations, as we now have
codes that are neither closed nor open realizable, codes that are closed but not open realizable,
and codes that are open and closed realizable. We conclude with the following conjecture:

Conjecture 6.1. If C is locally great, then C is realizable by convex sets in Euclidean space
(note that we make no assumptions on closedness or openness here).
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