
Gröbner Bases and the Neural Ideal

Jessica Liu

July 21, 2016

Abstract

The spatial location of an organism is encoded by place cells, neurons that correspond
to convex receptive fields in a stimulus space. The brain must infer properties of a stimulus
space using only information extracted from a neural code, leading to the question of how a
map of receptive fields can be extracted from neural codes. In a recent paper, Curto, Itskov,
Veliz-Cuba, and Youngs develop methods to tackle this question. They define a neural ring
and a neural ideal, algebraic objects that encode the combinatorial data of a neural code. A
specific generating set of the neural ideal, called the canonical form, translates to a minimal
description of the relationships between receptive fields in the stimulus space. Knowing these
minimal relationships makes it much easier to understand the stimulus space structure associ-
ated with a given code. There are two known algorithms to find the canonical form, the more
recent version of which has been implemented in MatLab and SageMath. Both algorithms are
extremely computationally inefficient when the size of the code is large. In contrast, Petersen et
al. have found that computing another generating set of the neural ideal, the universal Gröbner
basis, is vastly more efficient, suggesting the possibility of using Gröbner bases to improve the
canonical form algorithms. Here we find that the canonical form is the smallest generating set
of the neural ideal that can be a Gröbner basis, which in some cases allows us to compute the
Gröbner basis as a shortcut to computing the canonical form. Along the way, we develop a
representation of pseudo-monomials as hypercubes.

1 Introduction

The brain encodes and processes information with neurons, cells that fire in response to some
stimuli. In order to understand how the brain works, scientists must not only study the physical
processes the underlie brain function; they must also understand how the brain represents infor-
mation abstractly. In 2014, the Nobel Prize in Medicine was awarded for the discovery of place
cells, neurons that encode the spatial location of an organism. Every place cell is associated with
a convex region in a stimulus space called a place field, and will fire if and only if the organism
is in the corresponding place field. However, although we know the basics of how individual place
cells encode information, the brain’s understanding of spatial awareness depends on the inputs from
many different place cells that may have overlapping place fields.

In The Neural Ring [2], Curto et al. use the tools of algebraic geometry to construct methods
of inferring the relationships between place fields from only the combinatorial information of a neu-
ral code. Given a neural code, one can generate a Neural Ideal which has a generating set called
the canonical form that gives a minimal description of the relationships between receptive fields.

1

One algorithm to compute the canonical form is described in The Neural Ring, and another is
described in subsequent paper Neural Ring Homomorphisms and Maps between Neural Codes [1].
Both algorithms have been implemented in Sage Math by Peterson et al [4]; however, they are both
too slow to make it feasible to compute the canonical forms of larger codes. In contrast, Peterson
et al. found that computing the Gröbner basis, another generating set of the Neural Ideal, has a
much faster runtime. Furthermore, in some cases the Gröbner basis and the canonical form are
equal, suggesting that computing the Gröbner basis can be a shortcut to computing the canonical
form.

In this paper, we further explore the relationship between the canonical form and the universal
Gröbner basis of a neural idea. We find that if the canonical form is a Gröbner basis, then it
is a reduced Gröbner basis, and, moreover, it is the universal Gröbner basis (this was first as-
serted by Peterson et al.). Conversely, if the universal Gröbner basis only consists of so-called
pseudo-monomials, then it is equal to the canonical form. Additionally, if a nontrivial code is
complement-complete, then the canonical form of its neural ideal is not a Gröbner basis.

2 Background

The following background is adapted from The Neural Ring and Ideals, Varieties and Algorithms.

Definition 2.1. Given a set of neurons labeled {1,. . . , n}, a neural code on n neurons is a set of
binary firing patterns C ⊂ {0, 1}n i.e. a set of binary strings of neural activity. An element c ∈ C
of a neural code is a codeword, where each codeword corresponds to a subset of neurons

supp(c) = {i ∈ [n]|ci = 1} ⊂ [n].

The entire code can be identified with a set of subsets of neurons,

supp(C) = {supp(c)|c ∈ C} ⊂ 2[n].

Notice that we discard the details of timing or rate of neural activity. The neural code as defined
here is what is known as a combinatorial code.

2.1 Receptive Fields

In many areas of the brain, neurons can be associated with receptive fields in a stimulus space.
We are particular interested in the receptive fields of place cells, which are neurons that fire in re-
sponse to a animal’s location. More specifically, each individual place cell is associated with a place
field, a convex region of the animal’s physical environment where the place cell has a high firing rate.

Example 2.1. Let us consider the following code on 3 neurons: C = {100, 110, 010, 011, 001},
where each neuron corresponds to a place field in R2.

The codewords 100, 010, and 001 tell us that the place fields associated with all three neurons

2

each have some section that does not overlap with another place fields. Additionally, the codewords
110 and 011 tell us that the place fields of the first and second neuron intersect, and the place fields
of the second and third place field intersect. The codeword 111 is not in the code, so we know that
there is no region of the stimulus space where all three place fields intersect. Now we have enough
information to draw a picture of the place fields:

1 2 3

For a set of receptive fields U = {Ui}ni=1 in a stimulus space X, the receptive field code C(U)
is the neural code that encodes for the stimulus space structure of X. We are interested in know-
ing what information about the stimulus space can be inferred from just C(U), without knowing
anything prior about the receptive fields. While in the above example the stimulus space structure
can be directly deduced from the code, as the number of neurons grows the problem of determin-
ing the proper relationships between receptive fields quickly becomes intractable. In The Neural
Ring, Curto et al. use objects from algebraic geometry to develop a method to extract a minimal
description of the receptive field structure.

2.2 The Neural Ring

Before defining the neural ring, we briefly review some necessary algebraic geometry concepts.

Ideals: Let R be a commutative ring. A subset I ⊂ R is an ideal of R if it has the following
properties:

1. I is a subgroup of R under addition.

2. If a ∈ I, then ra ∈ I for all r ∈ R.

An ideal I is said to be generated by a set A, and we write I = 〈A〉, if I is the set of all finite
combinations of elements of A with coefficients in R.

Varieties: Let k be a field, n the number of neurons, and k[x1, . . . , xn] a polynomial ring with one
indeterminate xi for each neuron. In the neural activity space kn, each point v = (v1, . . . , vn) ∈ kn
is a vector tracking the state vi of each neuron. We will regard neurons as having only two states,
firing and silent, and so we choose k = F2 = {0, 1}. For a polynomial f ∈ F2[x1, . . . , xn] and a point

3

v ∈ {0, 1}n, we will denote f(v) as the evaluation of f by setting xi = vi whenever xi appears in f .
Let J ⊂ F2[x1, . . . , xn] be an ideal, and define the variety

V (J) = {v ∈ {0, 1}n|f(v) = 0 for all f ∈ J}.

Similarly, for a subset of the neural activity space S ⊂ {0, 1}n, we can define the ideal of this subset
as

I(S) = {f ∈ F2[x1, . . . , xn]|f(v) = 0 for all f ∈ J}.

Now we can define a more specific kind of ideal that contains the combinatorial information of a
neural code.

Definition 2.2. Let C ⊂ {0, 1}n be a neural code. IC is defined as the ideal corresponding to the
set of polynomials that vanish on all codewords of C.

IC = I(C) = {f ∈ F2[x1, . . . , xn]|f(c) = 0 for all c ∈ C}.

Notice that for all C, IC contains the ideal generated by the Boolean relations, defined as

B = 〈x21 − x1, . . . , x2n − xn〉.

While IC contains all of the combinatorial information of the code, we would like to be able to
represent the code without the Boolean relations, which are redundant. The neural ideal, JC , can
be defined via an explicit set of generating relations.

The Neural Ideal:
For any v ∈ {0, 1}n, consider ρv, defined as

ρv =

n∏
i=1

(1− vi − xi) =
∏

{i|vi=1}

xi
∏

{j|vj=0}

(1 + xj) =
∏

{i∈supp(v)}

xi
∏

{j 6∈supp(v)}

(1− xj).

Notice that for all v, the polynomial ρv satisfies ρv(v) = 1 and ρv(x) = 0 for all x 6= v. Therefore
we think of ρv as the characteristic function for v. For a code C, the neural ideal JC is generated
by all ρv for v 6∈ C.

JC = 〈{ρv|v 6∈ C}〉.

Note that if C = {0, 1}n, then JC = ∅.

The ideal IC and the neural ideal JC have the following relation, as described in The Neural Ring.

4

Lemma 2.1 (Curto et al.). Let C ⊂ {0, 1}n be a neural code. Then IC = JC +B, where B is the
set of boolean relations in F2[x1, . . . , xn].

This tells us that for a code C, the structure of IC is captured by JC , since the Boolean relations
B are in the ideal of any neural code.

It turns out that we can interpret elements of IC (and thus JC) in terms of relationships between
receptive fields. First we need the following notation: for any σ ⊂ [n], define

Uσ =
⋂
i∈σ

Ui, and xσ =
∏
i∈σ

xi

Lemma 2.2 (Curto et al.). Let X be a stimulus space, let U = {Ui}ni=1 be a collection of open
sets in X, and consider the receptive field code C = C(U). Then for any pair of subsets σ, τ ∈ [n],

xσ
∏
i∈τ

(1− xi) ∈ IC ⇐⇒ Uσ ⊆
⋃
i∈τ

Ui.

Of course, not all of the relations in the ideal are necessary to infer the receptive field structure.
For example, x1(1 − x1) → U1 ⊆ U1 is clearly redundant. Another example is the set of relations
x1(1− x3)(1− x4) =⇒ U1 ⊆ U3

⋃
U4 and x1x2(1− x3)(1− x4) =⇒ U1

⋂
U2 ⊆ U3

⋃
U4. The first

relation implies the second, so we obviously don’t need both of them to describe the receptive field
relationships. In fact, we can define “minimal” generating set of the neural ideal that captures the
essential receptive field structure without redundancy.

2.3 The Canonical Form

First we introduce some definitions and notation.

Definition 2.3. For some f ∈ F2[x1, . . . , xn], f is a pseudo-monomial if f has the form

f =
∏
i∈σ

xi
∏
j∈τ

(1 + xj).

for some σ, τ ⊂ [n] with σ ∩ τ = ∅.

An ideal J ⊂ F2[x1, . . . , xn] is a pseudo-monomial ideal if J can be generated by a set of
pseudo-monomials.

Let J ⊂ F2[x1, . . . , xn] be an ideal, and let f be a pseudo-monomial in J . We say that f is a
minimal pseudo-monomial of J if there does not exist another pseudo-monomial g ∈ J , where
deg(g)<deg(f), such that f = gh for some h ∈ F2[x1, . . . , xn].

5

The set of all minimal pseudo-monomials in a pseudo-monomial J gives us a unique and compact
description of J , called the canonical form.

Definition 2.4. Let J be a pseudo-monomial ideal. The canonical form of J is the set CF (J) =
{f1, . . . , fl} that is the set of all minimal pseudo-monomials of J .

Note that each generator of the neural ideal, ρv, is a multiple of some element of the canonical
form. Thus the canonical form is a generating set of the neural ideal. The canonical form tells us
the minimal relationships that must be satisfied by any receptive field representation of a code as
C = C(U), as proven in the following theorem from The Neural Ring :

Theorem 2.1 (Curto et al.). Let C ⊂ {0, 1}n be a neural code, and let U = {U1, . . . , Un} be any
collection of opens sets in a nonempty stimulus space X such that C = C(U). The canonical form
of JC is:

JC = 〈{xσ|σ is minimal w.r.t Uσ = ∅},

{xσ
∏
i∈τ

(1 + xi)|σ, τ 6= ∅, Uσ 6= ∅,
⋃
i∈τ

Ui 6= X, and σ, τ are each minimal w.r.t. Uσ ⊂
⋃
i∈τ

Ui},

{
∏
i∈τ

(1 + xi)|τ is minimal w.r.t X ⊂
⋃
i∈τ

Ui}〉.

Example 2.2. Let C = {000, 100, 010, 101, 011}. The canonical form of JC is 〈x1x2, x3(1+x1)(1+
x2), from which we can read off the following receptive-field relationships:

U1

⋂
U2 = ∅, U3 ⊂ U1

⋃
U2

From these relationships we can draw a realization of the receptive fields:

1 2

3

The Neural Ring contains an algorithm to compute the canonical form, using the primary decompo-
sition of the neural ideal. In Neural Ring Homomorphisms and Maps Between Neural Ideals, Curto
and Youngs present an alternative algorithm that computes the canonical form iteratively, based
on the operation of adding a codeword to a code. Youngs has implemented the iterative algorithm
in Matlab, and both algorithms have been implemented in SageMath by Petersen et al.

Petersen et al. also provide a table of runtime comparisons between the three implementations.
Both implementations of the iterative algorithm vastly outperform the primary decomposition al-
gorithm, but they are still slow enough that computation of the canonical form quickly becomes

6

infeasible as the number of neurons grows. Petersen et al. found that computing the universal
Gröbner basis of the neural ideal is significantly faster, especially as the size of the code grows.
Knowing this, we turn our attention to Gröbner bases, with the goal of using them to improve the
runtime of computing the canonical form.

2.4 Gröbner Bases

Before we can work with Gröbner bases, we must first define some necessary terminology. The
following definitions are adapted from Ideals, Varieties and Algorithms.

Definition 2.5. A monomial ordering > on k[x1, . . . , xn] is a relation > on the set of monomials
{xα, α ∈ Zn≥0}, or, equivalently, on Zn≥0, satisfying:

(i) > is a total (or linear) ordering on Zn≥0.

(ii) If α > β and γ ∈ Zn≥0, then α+ γ > β + γ.

(iii) > is a well-ordering on Zn≥0.

Once we define a monomial ordering on a polynomial ring, it makes sense to talk about the leading
monomial of a polynomial in the ring. In this paper the field we are working with is F2, so the
leading monomial and the leading term of a polynomial are the same since all terms have coefficient
1. Let f be a nonzero polynomial in k[x1, . . . , xn], and fix a monomial ordering on k[x1, . . . , xn].
We denote the leading term of f as LT(f).

For an ideal I ⊂ F2[x1, . . . , xn], the ideal of leading terms is defined as follows. Let I be an ideal
other than 〈0〉, and fix a monomial ordering on k[x1, . . . , xn]. Then we denote by LT(I) the set of
leading terms of nonzero elements of I. Thus,

LT(I) = {xα| there exists f ∈ I\{0} with LT(f) = xα}.

We denote by 〈LT(I)〉 the ideal generated by the elements of LT(I).

Now we are ready to define a Gröbner basis.

Definition 2.6. Fix a monomial order on on the polynomial ring k[x1, . . . , xn]. A finite subset
G = {g1, . . . , gt} of an ideal I ⊂ k[x1, . . . , xn] different from {0} is said to be a Gröbner basis if

〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

Equivalently, a set {g1, . . . , gt} ⊆ I is a Gröbner basis of I if and only if the leading term of any
element of I is divisble by one of the LT(gi).

7

One of the more useful properties of a Gröbner basis is that given a polynomial f and a Gröbner
basis G, the remainder of f when divided by the set of elements in G is uniquely determined. It
follows that for an ideal I ⊂ k[x1, . . . , xn], a polynomial f ∈ k[x1, . . . , xn] is in I if and only if the
remainder of division on f by a Gröbner basis of I is 0.

We are interested in Gröbner bases because for some codes, the Gröbner basis of the neural ideal
is equal the canonical form of the neural ideal.

When most computer algebra systems compute the Gröbner basis of an ideal, they compute the
reduced Gröbner basis with respect to a given monomial ordering. A Gröbner basis G is a reduced
Gröbner basis for all g ∈ G, no trailing term of any g ∈ G is divisible by the leading term of any
element of G. For any given monomial ordering, the reduced Gröbner basis of an ideal is unique,
but changing the monomial ordering can change the reduced Gröbner basis of an ideal. A Gröbner
basis of an ideal that is a Gröbner basis for all monomial orderings is a universal Gröbner basis.

Lemma 2.3. [3] If the canonical form of a neural ideal is a Gröbner basis, then the canonical form
is a universal Gröbner basis.

Proof outline. Since the leading term of a pseudo-monomial is consistent across all monomial or-
derings, we know that if the canonical form is a Gröbner basis for one monomial ordering, then it
is a Gröbner basis for all monomial orderings, and thus is a universal Gröbner basis.

An ideal can admit multiple Gröbner bases that are universal, but in this paper we will use the
term “the universal Gröbner basis ” to refer to a specific basis that is unique for each ideal, and is
defined as the following:

Definition 2.7. Let I be an ideal. The universal Gröbner basis is the union of all the reduced
Gröbner bases of I with respect to any monomial order.

Note that the universal Gröbner basis is an instance of a universal Gröbner basis. Also note that
the polynomials in the universal Gröbner basis are always square-free, because they are the result
of applying Buchberger’s algorithm to a set of pseudo-monomials.

3 Results

Recall that our ultimate goal is to use Gröbner bases to find a faster way to compute the canonical
form. Our results, together with those of Peterson et al., form the first steps in this direction.
Our main result, proven in Section 3.2, is that if a reduced Gröbner basis contains only pseudo-
monomials, then it must be equal to the canonical form (Corollary 3.2). In order to prove this, we
first build further understanding of pseudo-monomials in Section 3.1 by representing them as hy-
percubes. Finally, in Section 3.2, we prove that for codes where all codewords have a corresponding
complement in the code, the canonical form is not a Gröbner basis(Theorem 3.4), thereby resolving
a conjecture posed by Peterson et al.

8

3.1 Pseudo-monomials and hypercubes

The neural ideal and its canonical form are defined in terms of pseudo-monomials, which nicely
represent the information contained in the neural code and the receptive fields (recall Lemma 2.2).
Pseudo-monomials turn out to have many nice properties that make them much easier to work with
than general polynomials. We prove some properties below.

The following result states that the monomials in the expansion of a pseudo-monomial f = xσ
∏
i∈τ (1+

xi) are in bijection with the powerset of τ .

Example 3.1. Let f = x1(1 + x2)(1 + x3) = xσ
∏
i∈τ (1 + xi), where τ = {2, 3}. Note that

P (τ) = {{2, 3}, {2}, {3}, ∅}

and the expansion of f is
x1x2x3 + x1x2 + x1x3 + x1.

Clearly, we can define a bijection between the elements in P (τ) and the terms of f .

Proposition 3.1. Let f = xσ
∏
i∈τ (1 + xi) be a pseudo-monomial. Then we can write f as

f =
∑

γ∈P (τ)

xσxγ ,

where P (τ) is the powerset of τ .

Proof. Follows from Binomial theorem.

This way of representing pseudo-monomials as the sum of its terms makes it clear that each term of
f corresponds to an element in the power set of τ , and the following properties of pseudo-monomials
obvious:

Lemma 3.1. Let f be a pseudo-monomial such that f = xσ
∏
i∈τ (1 + xi). Then:

1. The leading term of f is xσxτ .

2. All terms of f divide xσxτ .

3. xσ divides all terms of f .

Notice that like the power set of τ , the terms of f form a partially ordered set, with the partial
order defined by the degree of the terms. Thus we can represent f using a Hasse diagram, with the
terms of f as the vertices. Since there is an obvious bijection between the set of terms of f and the
powerset of τ , the Hasse diagram turns out to be a hypercube of dimension |τ |.

9

Definition 3.1. Let f be a pseudo-monomial, and let f = xσ
∏
i∈τ (1 + xi). We define the hyper-

cube of f as the Hasse diagram of the set of terms in f , where the partial ordering of the terms is
defined by the degree of the terms.
Note: Since the monomials of the pseudo-monomial g =

∏
i∈β(1 + xi) for some set β correspond

directly to the elements of the power-set of β, we will refer to the hypercube of g as the hypercube
of P (β).

By Lemma 3.1, the maximal element of the partially ordered set is xσxτ , and the minimal element
is xσ.

Example 3.2. Let f = x1(1 + x2)(1 + x3)(1 + x4). In this case, σ = {1} and τ = {2, 3, 4}.

{2, 3, 4}

{2, 4}{2, 3} {3, 4}

{2} {3} {4}

∅

Hasse diagram of the powerset of τ

x1x2x3x4

x1x2x4x1x2x3 x1x3x4

x1x2 x1x3 x1x4

x1

hypercube of f

The representation of pseudo-monomials as hypercubes is related, but not equivalent to the inter-
pretation of pseudo-monomials on the Boolean lattice discussed in The Neural Ring. In the Neural
Ring, the authors define the following variety for any a ∈ {0, 1, ?}n, where the ? can be thought of
as a “wildcard” element:

Va = {v ∈ {0, 1}n|vi = ai for all i s.t. ai 6= ?} ⊂ {0, 1, }n

.
For a pseudo-monomial f , they associate an element b ∈ {0, 1, ?}n to f if

f =
∏

{i|bi=1}

xi
∏

{j|bj=0}

(1 + xj).

Every element b corresponds to some interval of the Boolean lattice in the complement of C. Like
how the vertices of a hypercube of a pseudo-monomial are in bijection with the powerset of τ , the
elements of the interval associated with b are in bijection with the powerset of {i|bi = ?}.

Example 3.3. Let f = x1(1 + x3). The hypercube of f shown below as the dashed line. The
element associated with f is 1 ? 0. On the Boolean lattice, f describes the Boolean lattice interval
that corresponds to the variety compatible with 1 ? 0, which is [110, 100]

10

123

1312 23

1 2 3

∅

hypercube of P ({1, 2, 3})

111

101110 011

100 010 001

000

Boolean lattice

Note that the dimension of the hypercube of f is |τ |, while the dimension of the interval of the
Boolean lattice corresponding to f is the number of ”wildcards” in the element associated to f (i.e.
the difference between the number of neurons of the code and the number of variables in f).

This representation of a pseudo-monomial as a hypercube is a useful way to conceptualize the
relationship between pseudo-monomials, since we can represent pseudo-monomials as sub-cubes of
a larger hypercube by the following lemma:

Lemma 3.2. For any pseudo-monomial f = xσ
∏
i∈τ (1 + xi), the hypercube of f is a sub-cube of

the hypercube of g =
∏
j∈σ∪τ (1 + xj).

Proof. Writing g as the sum of its terms gives us

g =
∑

{γ∈P (σ∪τ)}

xγ .

Every term of f has the form xσxτ̂ where τ̂ ⊆ τ . For all τ̂ , σ ∪ τ̂ clearly is a subset of σ ∪ τ , so all
terms of f are terms of g. Thus the hypercube of f must be a subcube of the hypercube of g.

Example 3.4. Let f = x1(1+x2)(1+x3). Then the hypercube f form a subcube of the hypercube
of P ({1, 2, 3}), consistent with Lemma 3.2.
Note: Since the number of variables in this example is small and all the terms are square-free, we
will abuse notation and simply write the labels of the variables in each term in the hypercube

123

1312 23

1 2 3

∅

The Hasse diagram of f is the square in bold above containing vertices 1, 12, 13, and 123.

11

These hypercubes of pseudo-monomials portray a very nice geometric relationship between a pseudo-
monomial f and the set of pseudo-monomials that divide f . To justify this, we need the following
lemma:

Lemma 3.3. Let f, g be pseudo-monomials such that g = xα
∏
i∈β(1+xi) and f = xσ

∏
j∈τ (1+xj).

Then g|f if and only if α ⊂ σ and β ⊂ τ .

Proof. Suppose g|f . Then LT(g)|LT(f). Note that LT(g) = xαxβ and LT(f) = xσxτ , so α ∪ β ⊂
σ ∪ τ .
Suppose k ∈ α. Then xk|g, so xk|f . Since xk is a monomial, it must divide all of the monomials
of f . The monomial of f with the smallest degree is xσ, so xk must divide xσ. Thus k ∈ σ. Since
k ∈ α implies k ∈ σ, it follows that α ⊂ σ.
Now suppose k ∈ β. Then (1 + xk)|g, so (1 + xk)|f and for some quotient q, q + qxk = f . It

follows that xk|f − q. Note that LT(q) = LT(f)
xk

, so xk 6 |LT(q). Suppose k ∈ σ. Then xk|xσ,

so xσ 6 |LT(q). For every monomial xf in f , xσ divides xf , so since xσ 6 |LT(q), it follows that
xf 6= LT(q). Therefore the coefficient of LT(q) in f − q is non-zero. Then since xk|f − q, xk|LT(q).
We have reached a contradiction. Thus k 6∈ σ, which implies k ∈ τ . We’ve shown k ∈ β implies
k ∈ τ , therefore β ⊂ τ .
Suppose that α ⊂ σ and β ⊂ τ . Then xα|xσ and

∏
i∈β(1 + xi)|

∏
j∈τ (1 + xj). Thus g|f .

Remark: Note that a faster proof of Lemma 3.3 is that F2[x1, . . . , xn] is a unique factorization
domain.

Lemma 3.4. Let f = xσ
∏
i∈τ (1+xi) and let H be the hypercube of P (σ∪τ). A pseudo-monomial

h divides f if and only if the hypercube of h is a sub-cube of H and the hypercube of h intersects
the Hasse diagram of P (σ) at a unique vertex.

Proof. Let h = xα
∏
i∈β(1 + xi) and suppose that h|f . By Lemma 3.2, h is a subcube of P (α ∪ β),

so since α ∪ β ⊂ σ ∪ τ by Lemma 3.3, h is a subcube of H. Note that α ⊂ σ by Lemma 3.3, so
the hypercubes of h and P (σ) have at least one intersection. If the hypercube of h contains more
than 1 vertex of P (σ), then there exists some k such that k ∈ σ and k ∈ β, so h 6 |f by Lemma 3.3.
We’ve reached a contradiction, so the common vertex must be unique.
Conversely, suppose the hypercube of h is a subcube of H that intersects the hypercube of P (σ) at
a unique vertex. Because h is a subcube of H, it follows that α∪ β ⊂ σ ∪ τ . Then since xα divides
all monomials of h, xα|xσ so α ⊂ σ. Additionally, since the intersection of the hypercubes of h and
P (σ) is unique, for all k ∈ β, k 6∈ σ, so k ∈ τ . Thus β ⊂ τ , so h|f by Lemma 3.3.

Example 3.5. Let f = x1x2(1+x3)(1+x4). In the figure below, all the monomials of f are circled,
and the hypercube of P (σ) is shown in bold. A pseudo-monomial h divides f if and only if h is con-
tained within one of the squares “parallel” to the hypercube of f and h includes a vertex from P (σ).

12

1234

124 134123 234

12 14 13 23 24 34

1 2 3 4

∅

Theorem 3.1. Let f ∈ F2[x1, . . . , xn] such that f = xσ
∏
i∈τ (1 + xi), and let G = {g1, . . . , gs} ⊂

F2[x1, . . . , xn] be a set of pseudo-monomials. If the remainder on division of f by G is 0 for some
monomial ordering, then g divides f for some g ∈ G.

Proof. Suppose that the remainder on division of f by G is 0. Let rk denote the remainder af-
ter k steps of the division algorithm. Then there exists i1, . . . , im ∈ {1, . . . , s} such that f =
LT(f)
LT(gi1)

gi1 + LT(r1)
LT(gi2)

gi2 · · · = h1 + · · ·+hn, where hk = LT(rk)
LT(gik)

gik . Since f and h1, . . . , hk are pseudo-

monomials, we know that all terms of f divide LT(f), and all terms of hk divide LT (hk) for all k.
Since rk+1 = rk−hk+1, where LT(hk+1)|LT(rk), all terms in rk+1 divide LT(f) by induction. Thus
for all hk, the leading term of hk divides the leading term of f .

At each step of the division algorithm, the remainder is rk+1 = rk − hk+1, where r0 = f . From
above, we know that LT(hk)|LT(f), so the hypercube of hk must be a sub-cube of the hypercube of
P (σ

⋃
τ). The intersection of two hypercubes is always a hypercube, which contains 2q vertices for

some n ∈ N, so the intersection of the hypercubes of hk and P (σ) must have 2q vertices in common.

Recall that our polynomial addition is over the field F2. Thus since we know that f−h1−· · ·−hn = 0,
it follows that f, h1, . . . , hn together must contain an even number of each term. Consider the set of
vertices in the hypercube of P (σ). At the initial state of the algorithm, we start with the pseudo-
monomial f . Thus in the Hasse diagram of r0, the only vertex from P (σ) is xσ, the intersection
of the Hasse diagram of r0 and the hypercube of P (σ) contains an odd number of vertices. Since
f −

∑
hi = 0, the hypercubes of h1, . . . , hn together must contain an odd number of vertices from

the hypercube of P (σ). It follows that for some hk, the hypercube of hk and the hypercube of P (σ)
have an odd number of vertices in common. Since the intersection of two hypercubes is always a
hypercube, the hypercubes of hk and P (σ) must have 2q vertices in common for some q, so the only
odd number of vertices that they can have in common is 1.

Since LT(hk)|LT(f), by Lemma 3.2 the hypercube ofhk is a subcube of P (σ∪ τ). We’ve shown that
the hypercube of hk and the hypercube of of P (σ) intersect at a unique vertex, so by Lemma 3.4,
hk|f . Recall that hk is the multiple of some gi ∈ G, i.e., gi|hk, and thus there exists gi ∈ G such
that gi|f .

13

The following example illustrates the ideas behind the proof.

Example 3.6. We can think of each term in rk as having a binary state space of 1 or 0, which we
can represent graphically on the Hasse diagram of P (σ∪τ) by circling a vertex of the corresponding
term that has a non-zero coefficient in rk. At the first step of the division algorithm, all the vertices
corresponding to terms of f are circled. Let f = x1x2(1 + x3)(1 + x4). At the initial state of the
division algorithm, r0 = f , so only the terms of f have non-zero coefficients.

1234

124 134123 234

12 14 13 23 24 34

1 2 3 4

∅

Our focus is on the terms in the hypercube of P (σ). At the beginning of the division algorithm,
the vertex corresponding to x1x2 is the only one circled. We know that at the end of the division
algorithm, none of the vertices should be circled. Whenever we go from rk to rk+1, where rk+1 =
rk + hk, we can think of hk as ”flipping” the state of the set of monomials in hk. In other words,
f a monomial in hk is circled at rk, then it becomes uncircled at rk+1 and vice versa. The Hasse
diagram of

∏
i∈σ(1 + xi) goes from having one vertex circled at the beginning of the algorithm to

having no vertices circled at the end of the algorithm.

12

1 2

∅

Initial State

12

1 2

∅

End State

”Flipping” a vertex an even number of times has no effect on its state, so we know that at some
point some hk must flip an odd number of vertices (by the previous proof). Then the intersection
of the Hasse diagram of hk with the Hasse diagram of

∏
i∈σ(1 +xi) is a single vertex, so hk divides

f by Lemma 3.4.

14

3.2 The Universal Gröbner Basis

By Lemma 2.3, we know that if the canonical form is a Gröbner basis, then it is universal. Therefore
if the canonical form is a reduced Gröbner basis for some monomial ordering, then it is the reduced
Gröbner basis for all monomial orderings, making it equal to the universal Gröbner basis.

By definition, all elements of the canonical form are minimal pseudo-monomials, so the canoni-
cal form is in some way a ‘reduced’ generating set of the neural ideal. Note that the canonical
form is not necessarily a minimal generating set of the neural ideal, i.e. in some cases a proper
subset of the canonical form can generate the neural ideal. However, we find that the canonical form
is the minimal generating set of pseudo-monomials that can form a Gröbner basis of the neural ideal.

Theorem 3.2. If the canonical form, CF , of a neural ideal JC is a Gröbner basis of JC , then the
canonical form is a reduced Gröbner basis of JC .

Proof. Suppose that CF is a Gröbner basis, but not a reduced Gröbner basis. Then for some
pseudo-monomial f in CF , a monomial of f lies in 〈LT(CF\{f})〉. Since every monomial of
f divides LT(f), it follows that LT(f) ∈ LT(CF\{f})〉. Thus for some g ∈ CF , with g 6= f ,

LT(g)|LT(f). Let r = f − LT(f)
LT(g) g. Since the canonical form is a Gröbner basis, we know that the

remainder of division on r by CF is 0. In this division of r by CF , the pseudo-monomial f is
never used, since deg(f)>deg(r). It follows that the remainder of division of f by CF\{f} is 0, so
by Theorem 3.1, there exists some pseudo-monomial gi ∈ CF\{f} such that gi|f . Thus f is not
minimal, but we assumed that f was in the canonical form, so we have reached a contradiction.
Thus if the canonical form is a Gröbner basis, the canonical form must be a reduced Gröbner basis.

Corollary 3.1. If the canonical form of a neural ideal JC is a Gröbner basis, then it is the universal
Gröbner basis of JC .

Proof. Follows from Lemma 2.3 and Theorem 3.2.

Theorem 3.3. Let JC be a neural ideal and let G be the universal Gröbner basis of JC . For every
g ∈ G, if g is a pseudo-monomial, then g is in the canonical form of JC .

Proof. By definition, G is the union of the reduced Gröbner fan of JC . Thus if g ∈ G, g is in the
reduced Gröbner basis of some monomial ordering. Let R be a reduced Gröbner basis of JC such
that g ∈ R. Suppose that g is not minimal in JC . Then for some pseudo-monomial h ∈ JC such
that deg(h)<deg(g), h|g. Then for some r ∈ R, LT(r)|LT(h). Note that deg(r)<deg(g), so r 6= g.
But LT(r)|LT(g), because LT(h)|LT(g), so g and r cannot both be in a reduced Gröbner basis. We
have reached a contradiction. Therefore the only pseudo-monomials in the universal Gröbner basis
are minimal pseudo-monomials.

Corollary 3.2. Let JC be a neural ideal, and let G be the universal Gröbner basis of JC . If for
all g ∈ G, g is a pseudo-monomial, then the canonical form of JC is equal to G.

15

Proof. If all elements of G are pseudo-monomials, then all elements of G are in the canonical form
by Theorem 3.3, so G is a subset of the canonical form.
Note that since g only contains pseudo-monomials, g is the reduced Gröbner basis for any monomial
ordering by Lemma 2.3. Let f be a pseudo-monomial in the canonical form. We know that f reduces
to 0 when divided by G, so for some g ∈ G, it must be the case that g divides f . Since f is in the
canonical form, f is minimal, and the only pseudo-monomial that divides f is f itself. Thus g = f ,
so f is in G. Therefore the canonical form is a subset of G and thus is equal to G.

The implication of this result is an improved average runtime for calculating the canonical form
when the canonical form is a Gröbner basis. The amount of time it takes to compute the Gröbner
basis is trivial compared to the runtime of the iterative algorithm, so when the Gröbner basisThen
for all reduced Gröbner bases R of JC , R ⊂ JC . If for some R, R is not equal to the canonical form,
the time wasted computing the Gröbner basis is not significant. On the other hand, if it does turn
out that all elements of a reduced Gröbner basis of JC are pseudo-monomials, then the runtime is
improved by multiple orders of magnitude.

3.3 Complement-Complete Codes

Definition 3.2. Let c ∈ {0, 1}n be a code. The complement of c is the code c′ ∈ {0, 1}n such
that c′i = 1 if and only if ci = 0.
Let f be a pseudo-monomial such that f = xσ

∏
i∈τ (1 + xi). The complement of f , denoted f ′,

is f ′ = xτ
∏
j∈σ(1 + xj).

A code C ⊂ {0, 1}n is called complement-complete if for all c ∈ C, c′ ∈ C as well.

Lemma 3.5. Let f, g be pseudo-monomials such that f = xσ
∏
i∈τ (1+xi) and g = xα

∏
j∈β(1+xj)

If g divides f , then g′ divides f ′.

Proof. If g|f , then α ⊂ σ and β ⊂ τ . From Lemma 3.3 it follows that g′|f ′.

Proposition 3.2. Let I be an ideal. Then for all pseudo-monomials f ∈ I, there exists a minimal
pseudo-monomial g ∈ I such that g|f .

Proof. Only finitely many pseudo-monomials can divide f , so for some g ∈ JC such that g|f , g
must be minimal.

Theorem 3.4. Let C be a code on n neurons such that C ({0, 1}n. If C is complement-complete,
then the canonical form is not a Gröbner basis.

Proof. Note that since C 6= {0, 1}n, JC is not the trivial ideal. Let f be a pseudo-monomial in JC ,
and let S be the set of all pseudo-monomials of degree n that are multiples of f . The only pseudo-
monomials in JC of degree n are the characteristic functions ρv, where v 6∈ C. If v is not in C,
then its complement v′ is also not in C. Then ρv′ = (ρv)

′ is also one of the characteristic functions
that generate JC . Note that for all pseudo-monomials s ∈ S, s = fq for some pseudo-monomial q.
Then fq′ is also in S. Since the gcd of q and q′ is 1, it follows that f is the gcd of s and fq′, so f

16

is the gcd of S. Then f ′ is the gcd of S′ (the set of all complements of elements of S), so we can
express f ′ as a finite combination of elements in S′.

It follows that for all pseudo-monomials f ∈ JC , if there exists a pseudo-monomial d ∈ JC such
that d|JC , then d′ ∈ JC and d′|f ′. Thus a pseudo-monomial f in JC is minimal if and only if f ′ is
minimal, so if f is in the canonical form, then f ′ is in the canonical form. However, LT(f) = LT(f ′),
so they cannot both be in a reduced Gröbner basis. Then by Theorem 3.2, the canonical form is
not a Gröbner basis.

4 Future work

Using the previous results, we can drastically improve the speed of computing the canonical form
in cases where the canonical form is a reduced Gröbner basis. The hope is that in cases where
the canonical form is not a reduced Gröbner basis, we can still use the polynomials present in the
Gröbner basis to infer what the minimal pseudo-monomials of the neural ideal are.

Example 4.1. Let C be a code on 3 neurons such that the canonical form of JC is

JC = 〈x1x2, x1x3, (1 + x1)(1 + x2), x2(1 + x3), x3(1 + x2), (1 + x2)(1 + x3)〉.

Note that for all pseudo-monomials f in the canonical form, f ′ is in the canonical form, telling us
that C is complement-complete.

Using SageMath, we find the universal Gröbner basis of JC is

〈x1 + x3 + 1, x1 + x2 + 1, x2 + x3〉.

We represent each element of the Gröbner basis by circling the vertices corresponding to their terms
on the hypercube of P ({1, 2, 3}).

123

1312 23

1 2 3

∅

x1 + x2 + 1

123

1312 23

1 2 3

∅

x1 + x3 + 1

123

1312 23

1 2 3

∅

x2 + x3

Note that every element in the universal Gröbner basis is a combination of pseudo-monomials
that share a leading term. Looking at the picture above, it is easy to see what pseudo-monomials
combine to produce the elements of the Gröbner basis:

x1 + x2 + 1 = ((1 + x1)(1 + x2)) + (x1x2),

17

x1 + x3 + 1 = ((1 + x1)(1 + x3)) + (x1x3),

x2 + x3 = (x2(1 + x3)) + (x3(1 + x2)).

In this example, the smallest pseudo-monomials that sum to elements of the universal Gröbner basis
are exactly the elements of the canonical form. Additionally, notice that the two pseudo-monomials
that combine to give each element of the Gröbner basis are complements. In general, polynomials of
the form xa+xb and xa+xb+1 can be expressed as the sum of complementary pseudo-monomials,
where

xa + xb = xa(1 + xb) + xb(1 + xa)

xa + xb + 1 = xaxb + (1 + xa))1 + xb.

In this example, the universal Gröbner basis is not a reduced Gröbner basis in any monomial
ordering. Rather, it is the union of the Gröbner bases

〈x1 + x3 + 1, x2 + x3〉, 〈x1 + x2 + 1, x2 + x3〉

.

In the above example, the canonical form is not a minimal generating set of the neural ideal, since
the pseudo-monomials corresponding to one of the reduced Gröbner bases can be generated by the
other reduced Gröbner basis. This observation gives rise to the following conjecture:

Conjecture 4.1. Let JC be a neural ideal. If the universal Gröbner basis of JC is not a reduced
Gröbner basis, then the canonical form is not a minimal generating set of the neural ideal.

Example 4.2. Now let us consider a code on 4 neurons such that the universal Gröbner basis of
the neural ideal is

〈x1 + x4, x2 + 1, x1 + x3 + 1, x3 + x4 + 1〉

By Theorem 3.3, we know that the pseudo-monomial x2 + 1 must be in the canonical form. We
deduce from the previous example that the other elemnts in the Gröbner basis correspond to the
following complementary pseudo-monomials

x1 + x3 + 1 =⇒ x1x3, (1 + x1)(1 + x3)

x1 + x4 =⇒ x1(1 + x4), x4(1 + x1)

x3 + x4 + 1 =⇒ x3x4, (1 + x3)(1 + x4)

SageMath confirms that the complementary pseudo-monomials above along with x2+1 are precisely
the pseudo-monomials in the canonical form.

18

5 Appendix

5.1 Code

The following code builds upon the canonical form package written by Peterson et al. in SageMath.
If there is a polynomial in the Gröbner basis that is not a pseudo-monomial, then the method
returns the canonical form using the default canonical form algorithm. If all polynomials in the
Gröbner basis are pseudo-monomials, the method returns the Gröbner basis, which in that case is
equal to the canonical form.

de f improved canonica l (s e l f) :
gb = s e l f . g e t g r o e b n e r b a s i s ()
product = 1
f o r i in range (s e l f . d) :

product = product ∗ s e l f . x [i]∗(1+ s e l f . x [i])

f o r g in gb . gens () :
i f g != g . gcd (product) :

r e turn s e l f . g e t c a n o n i c a l ()
r e turn gb

6 Acknowledgements

I would like to thank my mentor, Anne Shiu, for her help and guidance. I would also like to thank
Kaitlyn Phillipson and Ola Sobieska, and Luis Garcia Puente for helpful discussions.

This project was conducted as part of the NSF-funded REU in Mathematics at Texas A&M Uni-
versity (DMS-1460766), Summer 2016.

References

[1] C. Curto and N. Youngs. Neural ring homomorphisms and maps between neural codes. ArXiv
e-prints, November 2015.

[2] Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs. The neural ring: an alge-
braic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol., 75(9):1571–
1611, 2013.

[3] Ethan Peterson, Dane Miyata, Ryan Kruse, and Ihmar Aldana. Neural mapping using gröbner
bases. 2016.

[4] Ethan Peterson, Nora Youngs, Ryan Kruse, Dane Miyata, Rebecca Garcia, and Luis D. Gar-
cia Puente. Neural codes in sage. 2016.

19

