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Abstract

The celebrated Combinatorial Nullstellensatz of Alon describes the
form of a polynomial which vanishes entirely on a Cartesian product of
one dimensional sets. We explore analogues of the Combinatorial Nullstel-
lensatz in higher dimensions, that is, we describe the form of polynomi-
als which vanish entirely on Cartesian products of arbitrary dimensional
sets, giving two generalizations of the original theorem; for the special
case where all the sets are two-dimensional, we also give another gener-
alization. We also discuss possible applications of these results to similar
generalizations of the famous Schwartz-Zippel lemma, which bounds the
amount of intersection between a variety and a Cartesian product of one-
dimensional sets.

1 Introduction

The well-known Schwartz-Zippel lemma (see [8]), which has numerous appli-
cations in areas including zero testing of polynomials, states that, for F ∈
K[x1, · · · , xn] a nonzero polynomial of degree d over a field K and S a finite
subset of K,

|Z(F ) ∩ Sn| ≤ d|S|n−1.

The lack of any assumptions on the polynomial F in this lemma allows it
to provide probabilistic zero testing algorithms which work without assuming
anything about the polynomial being tested.

In this paper, we attempt to generalize this statement to intersections of zero
sets of polynomials to Cartesian products of two-dimensional sets, and possibly
higher dimensional sets. While the original Schwartz-Zippel lemma only bounds
|Z(F ) ∩ Sn| for S ∈ K, we would like to bound |Z(F ) ∩ Sm| for S ∈ K2 and F
a polynomial in 2m variables, and possibly extend to higher dimensions as well.
This work builds directly on work of Mojarrad et al. [4], who found that

|Z(F ) ∩ (P ×Q)| = Od,ε(|P |2/3|Q|2/3+ε + |P |+ |Q|)
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for P,Q ⊂ C2 finite and F a polynomial in four variables over C, unless F is
of a particular form G(x, y)H(x, y, s, t)+K(s, t)L(x, y, s, t). Polynomials of this
form they call Cartesian, and we will generalize this definition to polynomials
of dimension higher than 2 as well.

Related to the Schwartz-Zippel lemma is the also well-known Combinato-
rial Nullstellensatz of Alon [1], which gives conditions on a polynomial which
must be met for the polynomial to vanish on a Cartesian product of sets Si.
The Combinatorial Nullstellensatz has diverse applications in areas from graph
theory to number theory, many of which are included in Alon’s original paper
publishing the result. In this paper, we will provide two generalizations of the
Combinatorial Nullstellensatz to Cartesian products of sets in more than one
dimension as well.

A Word on Notation

Throughout this paper, we will often deal with a polynomial F in n variables
x1, x2, · · · , xn over a field K. Henceforth, we will always assume K is an field,
and that we have fixed a particular arbitrary partition of n given by n = n1 +
n2 +n3 + · · ·+nk. We will let x denote the vector (x1, · · · , xn), and denote the
vector of the first n1 variables x1, the vector of the next n2 variables x2, and so
on.

2 Preliminaries

2.1 Definitions

Alon’s original Combinatorial Nullstellensatz [1] is the following two theorems:

Theorem 2.1. Let F ∈ K[x1, · · · , xn], and let S1, · · · , Sn ∈ K be nonempty.
Define polynomials Gi ∈ K[xi] with Gi(xi) =

∏
si∈Si

(xi − si) for each i. If F
vanishes on

∏
1≤i≤n Z(Gi), then there are polynomials H1, · · · , Hn ∈ K[x1, · · · , xn],

with deg(Hi) ≤ deg(F )− deg(Gi), such that

F =

n∑
i=1

GiHi.

Theorem 2.2. Let F ∈ K[x1, · · · , xn], and suppose deg(F ) =
∑n
i=1 ti, with

each ti a nonnegative integer. Suppose further that the coefficient of
∏n
i=1 x

ti
i

in F is nonzero. Then, if S1, · · · , Sn are subsets of F with #Si > ti, there is
s ∈

∏n
i=1 Si such that

f(s) 6= 0.

We generalize the special form of F appearing in the first theorem, extending
a generalization of Mojarrad et al. [4] to F in 4 variables and Gi in 2 variables
for each i to arbitrary partitions of the number of variables of F .
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Definition Let F ∈ K[x]. We say F is (n1, · · · , nk)-Cartesian if there exist
polynomials G1, · · · , Gk, with Gi ∈ K[xi] for each i, and polynomials H1, · · · , Hk ∈
K[x], with deg(Hi) ≤ deg(F )− deg(Gi) for each i, such that

F =

k∑
i=1

GiHi.

For any particular collection of polynomials (G1, · · · , Gk) satisfying the above,
we say F is (G1, · · · , Gk)-Cartesian.

We also define the algebraic degree of a set as follows.

Definition Let S ∈ Kn. Then the algebraic degree of S, denoted d(S), is the
minimal degree of a polynomial vanishing entirely on S.

To our knowledge, there is no standard name for this concept, so we call
it algebraic degree; note that in one dimension, d(S) = #S. It is impossible
to give an upper bound on #S in terms of d(S) in two or more dimensions, as
hyperplanes, such as a line in two dimensional space, in more than one dimension
can have infinite cardinality (if the field itself is infinite) and algebraic degree
1. The algebraic degree will effectively replace #S in the second Combinatorial
Nullstellensatz’s higher-dimensional analogue.

Finally, we give a definition of what we will call the (n1, · · · , nk)-reduced
support of F , recalling that ordinarily the support of a polynomial F is its set
of exponent vectors.

Definition Let F ∈ K[x]. The (n1, · · · , nk)-reduced support of F is the set of
vectors of the form (degx1

(M),degx2
(M), · · · ,degxk

(M)) for M a monomial in
F , where degxi

(M) is the degree of the monomial M in the variables of xi.

2.2 Statement of Results

We give our main two generalizations of the Combinatorial Nullstellensatz to
higher dimensions.

Theorem 2.3. Let F ∈ K[x] for K algebraically closed, and let Gi ∈ K[xi] be

squarefree for each i ∈ {1, · · · , k}. Suppose F vanishes on
∏k
i=1 Gi. Then F is

(G1, · · · , Gk)-Cartesian (and hence also (n1, · · · , nk)-Cartesian).

This theorem is somewhat analogous to Alon’s first Combinatorial Nullstel-
lensatz [1], but we are in higher dimensions, so now requiring F to vanish on a
zero set of a polynomial is no longer simply requiring F to vanish on a finite set
of points. Hence, while Alon’s first Combinatorial Nullstellensatz deals with a
finite set of points, our theorem here deals with an infinite set.

We note also that K being algebraically closed is a necessary condition for
this theorem, as if we take K to be R, then we can have a polynomial vanishing
on a product of zero sets in R of polynomials which is not Cartesian. Take, for
example, the polynomial in four variables over R given by
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F (x1, x2, y1, y2) = x1y1 + x2 + y2

,
with the partition fixed at n1 = n2 = 3. This polynomial vanishes on the

product of the zero sets of x2
1+x2

2 and y21 +y22 in R2, as these polynomials vanish
only at (0, 0) over R. It can be shown, however, that F is not (2, 2)-Cartesian,
for it does not vanish on the product of complex zero sets of two polynomials
in 2 variables. This argument will be presented in more detail later on.

We give an analogue of Alon’s second Combinatorial Nullstellensatz which
deals with finite sets.

Theorem 2.4. Let F ∈ K[x], and let (t1, · · · , tk) be maximal in the (n1, · · · , nk)-
reduced support of F with respect to the ordering where (a1, · · · , ak) ≥ (b1, · · · , bk)
iff ai ≥ bi for all i. Let Si ∈ Kni be finite sets, and suppose d(Si) > ti for each

i. Then there is s ∈
∏k
i=1 Si such that

f(s) 6= 0.

In the one dimensional case, this theorem is exactly the generalization of
the Combinatorial Nullstellensatz given by Lasoń [3], which weakens the re-
quirement on the vector (t1, · · · , tn) from the original theorem. The original
theorem of Alon is a corollary of this theorem’s one-dimensional case, as if
deg(F ) =

∑k
i=1 ti, then certainly (t1, · · · , tk) is maximal in the (1, 1, · · · , 1)-

support, which is just the support.
In the special case where ni = 2 for all i, we have another theorem.

Theorem 2.5. Suppose ni = 2 for all i, and let F ∈ K[x] for K algebraically
closed. Suppose the degree of F in the two variables of xi is di for each i. Then
if S1, · · · , Sk ⊂ K2 and #Si > di for all i, there exists s ∈

∏k
i=1 Si such that

f(s) 6= 0

unless F is (n1, · · · , nk)-Cartesian.

We note here that an exact analogue of this theorem in higher dimensions
will not be feasible, as there exist polynomials in six variables which vanish on
the product of two infinite sets in three dimensions, but which are not Cartesian.
An example of such a polynomial is F ∈ C[x1, x2, x3, y1, y2, y3] defined by

F (x1, x2, x3, y1, y2, y3) = x1y1 + x2 + y2.

Clearly F vanishes on the product of infinite sets in three dimensions where
x1, y1, x2, and y2 are all zero and x3 and y3 vary freely. But this polynomial can
be shown to not be (3, 3)-Cartesian, serving as a counterexample to the exact
generalization of Theorem 2.5 to cases where the ni exceed 2. This example will
be discussed further later.

We hope this theorem will help us prove analogues of the Schwartz-Zippel
lemma in higher dimensions in the ni = 2 case. It is worth noting that this
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theorem does hold if some of the ni are 1 as well, but we state this slightly
weaker version for simplicity.

3 Proofs of Results

3.1 First Generalized Combinatorial Nullstellensatz

To prove Theorem 2.3, we will need the following lemma.

Lemma 3.1. Let R ∈ K[x], for K algebraically closed, and let Gi ∈ K[xi] be

squarefree for each i ∈ {1, · · · , k}. Suppose R vanishes on
∏k
i=1 Gi. Suppose

also that the leading monomial of each Gi, for some arbitrary but fixed monomial
ordering, divides no monomial of R. Then R is identically zero.

Proof. The proof will proceed by induction on k. For the base case, k = 1,
we have a polynomial R vanishing on Z(G1), where the leading monomial of
G1 divides no monomial of R. As G1 is squarefree and R vanishes on Z(G1),
and K is algebraically closed, we must have that either G1 divides R, or R is
identically zero. But if G1 divides R, then certainly the leading monomial of
G1 divides some monomial of R; this is a contradiction, so R is identically zero.
This completes the base case.

Now, suppose the statement holds for k = l − 1; we will show it holds for
k = l. Write R as

R(x) =
∑
a

Ra(x1, x2, · · · , xn−nl
)xl

a

,
where a ranges over the exponent vectors of xl in R. Fix some q ∈

∏l−1
i=1 Z(Gi),

and let Rq be the polynomial given by setting the variables x1, · · · , xn−nl
to q

in R; then Rq =
∑
aRa(q)xl

a. Since R vanishes on
∏l
i=1 Z(Gi), Rq must vanish

on Z(Gl).
Since Rq vanishes on Z(Gl), and Gl is squarefree, we must have that either

Gl divides Rq, or R1 is identically zero. But if Gl divides Rq, then the leading
monomial of Gl divides some monomial of Rq, and hence also some monomial of
R. Hence, Rq is identically zero. But then Ra(q) = 0 for all a. Since this holds

for any q ∈
∏l−1
i=1 Z(Gi), we must have that Ra vanishes on all of

∏l−1
i=1 Z(Gi)

for every a.
Furthermore, no leading monomial of any Gi for 1 ≤ i ≤ l−1 can divide any

monomial of Ra for any a, since then it would divide a monomial of R, which is
a contradiction. Hence, by the inductive hypothesis, each Ra is identically zero.
It follows that R is identically zero.

We are now ready to prove Theorem 2.3, which is restated here for conve-
nience.
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Theorem 3.2. Let F ∈ K[x] for K algebraically closed, and let Gi ∈ K[xi] be

squarefree for each i ∈ {1, · · · , k}. Suppose F vanishes on
∏k
i=1 Gi. Then F is

(G1, · · · , Gk)-Cartesian (and hence also (n1, · · · , nk)-Cartesian).

Proof. Fix a monomial ordering which agrees with the degree ordering, for ex-
ample, the graded lexical ordering which orders first by degree and then lexically.
By the multivariate division algorithm [2], we can write

F =

k∑
i=1

GiHi + R,

where each Hi ∈ K[x] has multideg(Hi) ≤ multideg(F )−multideg(Gi), with
respect to the monomial ordering, and the leading monomial of each Gi divides
no monomial of R ∈ K[x]. Since we chose an ordering which agrees with the
degree ordering, we have deg(Hi) ≤ deg(F ) − deg(Gi) as well. Hence, to show
that F is (G1, · · · , Gk)-Cartesian, we need only show that R is identically zero.

Since F and
∑k
i=1 GiHi both vanish completely on

∏k
i=1 Z(Gi), we must

have that R vanishes completely on
∏k
i=1 Z(Gi) as well. Therefore, by Lemma

3.1, R is identically zero. Hence, F is (G1, · · · , Gk)-Cartesian.

As mentioned in the introduction, this theorem has a major weakness that
the set

∏k
i=1 Z(Gi) on which F must vanish to satisfy the conditions of the

theorem is, in general, not finite, making it difficult to work with in application
without a way to translate vanishing on a finite set into vanishing on a product
of hypersurfaces.

Additionally, it was indicated in the comments above that the polynomial
in four variables given by

F (x1, x2, y1, y2) = x1y1 + x2 + y2

is not (2, 2)-Cartesian, serving to show that the above theorem does not hold
over fields which are not algebraically closed. Here we explain in more detail
why this polynomial is not (2, 2)-Cartesian.

Suppose F is (2, 2)-Cartesian. Then there exist polynomials G and H, each
in two variables, of degree no more than 2 such that F vanishes on Z(G) ×
Z(H). Since Z(H) must be infinite, this means at the very least that there
are two distinct points (p1, p2) and (q1, q2) such that F vanishes on Z(G) ×
{(p1, p2), (q1, q2)}. But then we have that G must vanish on the entire zero set
of

x1p1 + x2 + p2

and

x1q1 + x2 + q2.
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Since these are polynomials of degree 1, their zero sets can only have a shared
curve if they are in fact identical; this can only happen if the two polynomials
are multiples of each other, which can only happen if p1 = q1 and p2 = q2.
But then the two points are not distinct, and it quickly follows that F is not
(2, 2)-Cartesian. As F vanishes on the product of the real zero sets of x2

1 + x2
2

and y21 + y22 , that is, just (0, 0, 0, 0), it follows that Theorem 2.3 does not hold
over R.

3.2 Second Generalized Combinatorial Nullstellensatz

Our second generalized Combinatorial Nullstellensatz, Theorem 2.4, deals with
finite sets, and is more closely related to Alon’s second Combinatorial Nullstel-
lensatz in that the restriction on the polynomial is in its support, not in its
form as a sum of products of polynomials. The proof is a modification of a
proof of Tao [8] to higher dimensions and with a slightly weaker condition, first
suggested and proven in the one-dimensional case by Lasoń [3], on the support.

Theorem 2.4 is restated here for convenience.

Theorem 3.3. Let F ∈ K[x], and let (t1, · · · , tk) be maximal in the (n1, · · · , nk)-
reduced support of F with respect to the ordering where (a1, · · · , ak) ≥ (b1, · · · , bk)
iff ai ≥ bi for all i. Let Si ∈ Kni be finite sets, and suppose d(Si) > ti for each

i. Then there is s ∈
∏k
i=1 Si such that

f(s) 6= 0.

Proof. Consider polynomials of the form∑
a

caxi
a,

where a ranges across all vectors of nonnegative integers with sum of terms
no more than ti. This polynomial has degree no more than ti. Hence, regardless
of the choice of ca, this polynomial cannot vanish on all of Si, as d(Si) > ti,
unless all the ca are zero.

We will show that we can find functions fi : Kni → K such that∑
s∈Si

fi(si)s
a
i = 0

for all a with sum of terms less than ti, and∑
s∈Si

fi(si)s
a
i = 1

for all a with sum of terms exactly ti.
To find such a function fi for a particular fixed i, we need to solve the above

linear system, which corresponds to a matrix with rows containing terms sai for
a fixed a, with si ranging all across Si. Let the row of this matrix corresponding
to a particular a be called ra.
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We will show that the rows of this matrix are linearly independent. Suppose
that ∑

a

cara = (0, 0, · · · , 0)

for some ca ∈ K. We must show that all the ca are zero to show that the ra
are linearly independent. But note that, if

∑
a cara = 0, since each row contains

sai for each si ∈ Si, we have that ∑
a

cas
a = 0

for every s ∈ Si; in other words,
∑
a cax

a vanishes on all of Si.
Since each a has sum of terms no greater than ti, deg(

∑
a cax

a) ≤ ti, so
deg(

∑
a cax

a) < d(Si); but
∑
a cax

a vanishes on Si, so the only possibility is
that it is identically zero. Hence, the ca are all zero, so the rows are linearly
independent.

From the fact that the rows are linearly independent, it follows that the above
system of linear equations has a solution, that is, we can find fi satisfying the
above system for each i. Now, letting s = (s1, s2, · · · , sk) and S = S1 × S2 ×
· · · × Sk, consider

∑
s∈S

(
k∏
i=1

fi(si)

)(
k∏
i=1

saii

)
.

This expression is 0 if any of the ai have terms summing to less than ti, and
is exactly 1 if all of the ai have terms summing to exactly ti.

Now, we can separate F into monomials, and note that every (d1, · · · , dk)
in the (n1, · · · , nk)-reduced support of F has either some di < ti or all di = ti,
by the maximality of (t1, · · · , tk) in the (n1, · · · , nk)-reduced support. Further,
(t1, · · · , tk) must be somewhere in the support. Hence,

∑
s∈S

(
k∏
i=1

fi(si)

)
F (x) 6= 0,

for all terms with some di < ti for some i contribute 0 to the sum and any
term with di = ti for all i contributes 1, and at least one term of the latter type
must exist. Therefore, F does not vanish on all of S.

Like Alon’s second Combinatorial Nullstellensatz, this result deals with finite
sets; however, now we must require that the algebraic degrees of the sets be
a certain size, rather than the somewhat easier to work with notion of the
cardinalities.
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3.3 Third Generalized Combinatorial Nullstellensatz

Our final generalized Combinatorial Nullstellensatz only applies to partitions
n = n1 + · · · + nk with all ni ≤ 2, although we only state the weaker version
where all ni = 2 here for simplicity. It is difficult to generalize this result to
higher dimensions, since the proof requires that if a set of polynomials of certain
degree all vanish on some set of certain size, then they share a common factor. In
higher dimensions, however, many curves can intersect in infinitely many points
without sharing a common curve; take, for instance, many planes intersecting
in a line. In two dimensions, however, we have the following lemma [4] [5].

Lemma 3.4. Let S be a possibly infinite set of curves in K2 of degree at most
d, and suppose that their intersection ∩C∈SC contains a set I of size |I| > d2.
Then there is a curve C0 such that C0 ∈ ∩C∈SC and |C0 ∩ I| ≥ |I| − (d− 1)2.

A proof of this lemma can be found in [4], building on work from [5]. They
only prove the result for K = C, but the proof extends to any field K without
any changes.

Finally, before proving the theorem, we will need a lemma which essentially
says that we can translate vanishing on Cartesian products of finite sets of
sufficient size to vanishing on Cartesian products of curves.

Lemma 3.5. Let F ∈ K[x], and let ni = 2 for all i. Let di be the degree of F in
the variables of xi for each i. Suppose that, for some m, 1 ≤ m ≤ k, there are
sets S1, · · · , Sm ∈ K2, with #Si > d2i for each i, and polynomials Gm+1, · · · , Gk
with Gi ∈ K[xi] such that F vanishes on

∏m
i=1 Si ×

∏k
i=m+1 Z(Gi). Then there

are polynomials G1, · · ·Gm, with |Z(Gi) ∩ Si| ≥ |Si| − (di − 1)2 for each i,
1 ≤ i ≤ m, such that F vanishes on

∏m
i=1 Z(Gi).

Proof. The proof will proceed by induction on m. For the base case m = 0, we
already have the statement by hypothesis.

Now, suppose the statement holds for m = l − 1; we will show that it holds
for m = l. Let S1, · · · , Sl and Gl+1, · · · , Gk be as in the statement of the lemma.

For each q ∈
∏l−1
i=1 Si ×

∏k
i=l+1 Z(Gi), let Fq be the polynomial in xl given by

setting all the variables other than those in xl to q.
Since F vanishes on

∏l
i=1 Si×

∏k
i=l+1 Z(Gi), we must have that Fq vanishes

on Sl for any choice of q. As #Sl > d2l , and deg(Fq) ≤ dl for every q, by Lemma
3.4, we have that the Fq must vanish on some common curve, and hence share
a factor Gl, such that |Z(Gl) ∩ Sl| ≥ |Sl| − (dl − 1)2.

Since all the Fq vanish on Z(Gl), we have that F vanishes on
∏l−1
i=1 Si ×∏k

i=l Z(Gi). The conditions for the inductive hypothesis are now satisfied, and
thus we can find G1, · · · , Gl−1, with |Z(Gi) ∩ Si| ≥ |Si| − (di − 1)2 for each i,

such that F vanishes on
∏k
i=1 Z(Gi), and the proof is complete.

Note that a lemma of this type is entirely unnecessary in the one-dimensional
case, as it is easy to find a polynomial which vanishes exactly on any given finite
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set S, simply by taking
∏
s∈S(x− s). In the higher-dimensional case, however,

this lemma proves invaluable in linking a polynomial vanishing on a finite set to
a polynomial vanishing on a product of curves. We are now ready to prove our
final generalized Combinatorial Nullstellensatz, Theorem 2.5, which we restate
here for convenience.

Theorem 3.6. Suppose ni = 2 for all i, and let F ∈ K[x] for K algebraically
closed. Suppose the degree of F in the two variables of xi is di for each i. Then
if S1, · · · , Sk ⊂ K2 and #Si > di for all i, there exists s ∈

∏k
i=1 Si such that

f(s) 6= 0

unless F is (n1, · · · , nk)-Cartesian.

Proof. Suppose the contrary, that F vanishes on all of
∏k
i=1 Si. Then, by

Lemma 3.5, we can find G1, · · · , Gk, with Gi ∈ K[xi] for each i such that

F vanishes on
∏k
i=1 Z(Gi); we can further select these Gi to be squarefree, as

every polynomial in K[x] shares its zero set with a squarefree polynomial. By
Theorem 2.3, it follows that F is (n1, · · · , nk)-Cartesian. This completes the
proof.

It was indicated earlier that this theorem does not hold in higher dimensions,
at least not in the n1 = n2 = 3 case, because the polynomial in six variables
defined by

F (x1, x2, x3, y1, y2, y3) = x1y1 + x2 + y2

is not (3, 3)-Cartesian but vanishes on a product of infinite sets in three
dimensions, namely, the sets defined by x1 = x2 = 0 and y1 = y2 = 0. To
see that this polynomial is not Cartesian, note that it is essentially the same
polynomial as the polynomial discussed just after Theorem 2.3, but now in six
variables; unsurprisingly, the argument that the polynomial is not Cartesian is
almost identical. Suppose F is (3, 3)-Cartesian, so it vanishes on the product
of zero sets of polynomials in three variables G and H. Then, since each Z(H)
is two dimensional, there are at the very least two distinct pairs (p1, p2) and
(q1, q2) such that

x1p1 + x2 + p2

and

x1q1 + x2 + q2,

now as polynomials in 3 variables x1, x2, and x3, share a common factor.
As they are degree 1 polynomials, this could only happen if they are multiples
of each other, which just as above implies (p1, p2) = (q1, q2), contradicting the
assumption that the two pairs are distinct. Hence, F is not (3, 3)-Cartesian,
demonstrating the failure of an exact generalization of Theorem 2.5. Should
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such a generalization be sought, the condition on the sets Si must be stronger
than cardinality alone (such as the algebraic degree condition in Theorem 2.4).

4 Future Directions

In future work, we hope to generalize the Schwartz-Zippel to higher dimensions
as well. As mentioned in the introduction, the Schwartz-Zippel lemma asserts
that, for F ∈ K[x1, · · · , xn] a nonzero polynomial of degree d over a field K and
S a finite subset of K,

|Z(F ) ∩ Sn| ≤ d|S|n−1.

As mentioned in the introduction, Mojarrad et al. provide something like a
higher-dimensional analogue of this lemma for two sets P and Q of dimension
2 intersecting a variety in C4 [4]. They show that, if X is a variety in C4 of
degree d and dimension three, and P,Q ∈ C2 are finite, then

|X ∩ (P ×Q)| = Od,ε(|P |2/3|Q|2/3+ε + |P |+ |Q|).

We hope to generalize this to arbitrarily many two-dimensional sets in C2k,
and further to make the dependence on d explicit, as in the original Schwartz-
Zippel lemma. In their proof, Mojarrad et al. make use of the following incidence
bound, proven by Sheffer and Zahl [6]:

Theorem 4.1. Let P ⊂ C2 and let C be a set of algebraic curves of degree at
most d. If the incidence graph of P and C contains no K2,M or KM,2, then

I(P, C) = Od,M,ε(|P|2/3+ε|C|2/3 + |P|+ |C|).

Here, the incidence graph refers to the bipartite graph with vertex sets P and
C, where there is an edge between p ∈ P and C ∈ C exactly when p ∈ C. I(P, C)
refers to the number of edges in this graph, that is, the number of incidences.
In future work, we hope to make use of incidence bounds due to Solymosi and
Tao [7] to further generalize the Schwartz-Zippel Lemma in a similar way.
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[3] M. Lasoń. A generalization of Combinatorial Nullstellensatz. Electronic
Journal of Combinatorics, 17:1–6, 2010.

[4] H. Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw. Schwartz-Zippel
bounds for two-dimensional products. 2015, arXiv:1507.08083.

[5] O. Raz, M. Sharir, and F. de Zeeuw. Polynomials vanishing on Cartesian
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