Neural Bonanza III

The Final Bonanza, Pt. II

Brianna Gambacini, University of Connecticut

Sam Macdonald, Willamette University

A code *C* is **max-intersection complete** if all the intersections of its facets are in *C*. If a code does not contain all of its facets' intersections then it is **max-intersection incomplete**.

Definition

For a neural code *C* on *n* vertices, the **simplicial complex** $\Delta(C)$ is a subset of $2^{[n]}$ that is closed under taking subsets, where $[n] := \{1, 2, ..., n\}$ is the population of neurons. More specifically:

 $\Delta(C) := \{ \sigma \subseteq [n] : \sigma \subseteq \alpha \text{ for some } \alpha \in C \}.$

Definition

Let Δ be a simplicial complex on n vertices and $\sigma \in \Delta$. Then the **link** of σ in Δ is:

$$\mathsf{Lk}_{\sigma}(\Delta) := \{ \tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta \}.$$

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

As M_i and M_j are distinct, there must exist α , β such that $M_i = \sigma \alpha$ and $M_j = \sigma \beta$.

Consider $Lk_{\sigma}(\Delta)$. Recall that $Lk_{\sigma}(\Delta) := \{\tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta\}$.

Consider $Lk_{\sigma}(\Delta)$. Recall that $Lk_{\sigma}(\Delta) := \{\tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta\}.$

As $\sigma \cup \alpha$ and $\sigma \cup \beta \in \Delta(C)$, it must be the case that $\alpha, \beta \in Lk_{\sigma}(\Delta)$.

Consider $Lk_{\sigma}(\Delta)$. Recall that $Lk_{\sigma}(\Delta) := \{\tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta\}$.

As $\sigma \cup \alpha$ and $\sigma \cup \beta \in \Delta(C)$, it must be the case that $\alpha, \beta \in Lk_{\sigma}(\Delta)$.

Thus, as it stands, $Lk_{\sigma}(\Delta)$ is the following:

$\alpha \qquad \beta$

which is not contractible. There are three ways to make this link contactable, and we will show how each leads to a contradiction.

This would introduce $\sigma \alpha \beta$ to the code. This is either a facet of *C* or a subset of some facet in *C*. Either way, the intersection of this facet with M_i is $\sigma \alpha$, a contradiction.

This would introduce $\sigma \alpha \lambda$ and $\sigma \beta \lambda$ to the code. These codewords are either facets of *C* or subsets of other facets in *C*. Either way, the intersection of these facets is $\sigma \lambda$, a contradiction.

This would introduce quite a few things to the code. However, just focusing on α , λ_1 , and λ_2 , we see that both $\sigma \alpha \lambda_1$ and $\sigma \lambda_1 \lambda_2$ are in the code, meaning this case also results in contradiction. Thus, *C* must be max intersection complete. \Box

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n .

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n .

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n .

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

The facets M_i and M_j must be of at least length two to remain distinct, given their shared σ .

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n .

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_i \in C$ such that $M_i \cap M_i = \sigma$.

The facets M_i and M_j must be of at least length two to remain distinct, given their shared σ .

However, if M_i and M_j were of length two, then σ would be a mandatory codeword.

So M_i and M_j must be of length three.

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As *C* is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As *C* is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.

To remain distinct from M_i and M_j , M_k must contain some neuron $\tau \notin M_i$, M_j . However, if both $M_i \cap M_k = \sigma$ and $M_j \cap M_k = \sigma$, then there would exist a local obstruction at σ .

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As *C* is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.

To remain distinct from M_i and M_j , M_k must contain some neuron $\tau \notin M_i$, M_j . However, if both $M_i \cap M_k = \sigma$ and $M_j \cap M_k = \sigma$, then there would exist a local obstruction at σ .

Thus, without loss of generality, there must exist some α such that $M_i \cap M_k = \sigma \alpha$. Therefore, as *C* is 3-sparse we know that $M_k = \sigma \alpha \tau$, completing the proof. \Box

For a 3-sparse neural code, the **reduced** code of *C*, denoted C_{red} , is the code containing all length three codewords of *C* and their subsets that are also in *C*.

For a 3-sparse neural code, the **reduced** code of *C*, denoted C_{red} , is the code containing all length three codewords of *C* and their subsets that are also in *C*.

Example

Consider the following neural code:

C =

 $\{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.$

For a 3-sparse neural code, the **reduced** code of *C*, denoted C_{red} , is the code containing all length three codewords of *C* and their subsets that are also in *C*.

Example

Consider the following neural code:

C =

 $\{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.$

 $C_{red} = \{123, 134, 145, 13, 14, \emptyset\}$

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex cover $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d of C_{red} such that every set in U can be realized as fully \mathbb{R}^{d-1} or higher, then C is open convex.

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex cover $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d of C_{red} such that every set in U can be realized as fully \mathbb{R}^{d-1} or higher, then C is open convex.

Proof.

Let C be a 3-sparse locally good neural code on n neurons. Suppose that there exists some fully dimensional closed cover of C_{red} , denoted $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d . We will construct an open cover of C using U.

C =

 $\{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.$

U ₁₂₃ U ₁₃	U ₁₃₄	U ₁₄	U ₁₄₅
----------------------------------	------------------	-----------------	------------------

C =

{123, 134, 145, 13, 14, 26, 27, 29, **35**, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, Ø}.

U ₁₂₃ U ₁₃	U ₁₃₄	U ₁₄	U ₁₄₅
----------------------------------	------------------	-----------------	------------------

C =

{123, 134, 145, 13, 14, 26, 27, 29, **35**, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, Ø}.

U ₁₂₃ U ₁₃	U ₁₃₄	U ₁₄	U ₁₄₅
----------------------------------	------------------	-----------------	------------------

STEP ONE: INTERSECTIONS OF NEURONS IN *Cred*

Using the same epsilonic procedure as was used in Theorem 4.3, we can make this new realization fully dimensional.

The only neurons missing from U are the ones not involved in any triple-wise intersection. Let $A = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset C$ denote the set of these neurons.

The only neurons missing from U are the ones not involved in any triple-wise intersection. Let $A = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset C$ denote the set of these neurons.

Begin with some α_i such that α_i fires with some neuron $\beta_1 \in C_{red}$.

The only neurons missing from U are the ones not involved in any triple-wise intersection. Let $A = {\alpha_1, \alpha_2, ..., \alpha_n} \subset C$ denote the set of these neurons.

Begin with some α_i such that α_i fires with some neuron $\beta_1 \in C_{red}$.

U ₁₂₃	U ₁₃	U ₁₃₄	U ₁₄	U ₁₄₅
------------------	-----------------	------------------	-----------------	------------------

C =

 $\{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38,$ **46** $, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.$

U ₁₂₃	U ₁₃	U ₁₃₄	U ₁₄	U ₁₄₅
------------------	-----------------	------------------	-----------------	------------------

STEP TWO: NEURONS IN C BUT NOT C_{red}

Proof.

C =

 $\{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38,$ **46** $, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, <math>\emptyset\}$.

In general, either $\alpha_i \in C$ or it isn't. If not, draw it as a subset of β_1 . If so, draw it so that it overlaps with β_1 .

Repeat this process for each $1 \le i \le n$, each time selecting a codeword that contains a neuron already existing in the realization. This provides us with a fully dimensional closed realization of *C*.

Repeat this process for each $1 \le i \le n$, each time selecting a codeword that contains a neuron already existing in the realization. This provides us with a fully dimensional closed realization of *C*.

Thus, by Theorem 4.3, C is convex.

Conjecture

Let *C* be a closed convex neural code on *n* neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of *C*. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then *C* is not open convex.

Conjecture

Let *C* be a closed convex neural code on *n* neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of *C*. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then *C* is not open convex.

Conjecture

Let *C* be a locally good neural code on *n* neurons. If *C* is not open convex, then any convex realization of *C* in \mathbb{R}^d must contain a set that can only be realized in \mathbb{R}^{d-2} or below.

Conjecture

Let *C* be a closed convex neural code on *n* neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of *C*. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then *C* is not open convex.

Conjecture

Let *C* be a locally good neural code on *n* neurons. If *C* is not open convex, then any convex realization of *C* in \mathbb{R}^d must contain a set that can only be realized in \mathbb{R}^{d-2} or below.

Conjecture

Let C be a locally good neural code on n neurons. If $n \le 7$, then C must be either open or closed convex.

- Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Mohamed Omar, Zvi Rosen, Anne Shiu, and Nora Youngs. What makes a neural code convex? SIAM Journal on Applied Algebra and Geometry, 1(1):222-238, 2017.
- Chad Giusti and Vladimir Itskov. A no-go theorem for one-layer feedforward networks. *Neural computation*, 26(11):2527-2540, 2014.
- Sarah Ayman Goldrup and Kaitlyn Phillipson. Classification of open and closed convex codes on five neurons, 2014.