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More of the Same

De�nition
A code C is max-intersection complete if all the intersections of its facets are
in C. If a code does not contain all of its facets’ intersections then it is
max-intersection incomplete.

De�nition
For a neural code C on n vertices, the simplicial complex ∆(C) is a subset of
2[n] that is closed under taking subsets, where [n] := {1, 2, ..., n} is the
population of neurons. More speci�cally:

∆(C) := {σ ⊆ [n] : σ ⊆ α for some α ∈ C}.

De�nition
Let ∆ be a simplicial complex on n vertices and σ ∈ ∆. Then the link of σ in ∆
is:

Lkσ (∆) := {τ ⊆ [n]\σ : σ ∪ τ ∈ ∆}.
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Complete to the Max

Theorem
Let C be a locally good neural code on n neurons. If no intersection of facets
contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets
M1,M2, . . . ,Mn such that no intersection of facets contains more than one
neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus
there must exist some neuron σ < C and Mi,Mj ∈ C such that Mi ∩ Mj = σ .

As Mi and Mj are distinct, there must exist α , β such that Mi = σα and Mj = σβ .
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Complete to the Max

Proof.

Consider Lkσ (∆). Recall that Lkσ (∆) := {τ ⊆ [n]\σ : σ ∪ τ ∈ ∆}.

As σ ∪ α and σ ∪ β ∈ ∆(C), it must be the case that α , β ∈ Lkσ (∆).

Thus, as it stands, Lkσ (∆) is the following:

α β

which is not contractible. There are three ways to make this link contactable,
and we will show how each leads to a contradiction.
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Case I: σαβ ∈ C

Proof.

α β

This would introduce σαβ to the code. This is either a facet of C or a subset of
some facet in C. Either way, the intersection of this facet with Mi is σα , a
contradiction.
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Case II: There Exists Exactly One λ

Proof.

α β

λ

This would introduce σαλ and σβλ to the code. These codewords are either
facets of C or subsets of other facets in C. Either way, the intersection of these
facets is σλ, a contradiction.
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Case III: There Exists a Finite Number of λs

Proof.

α β

λ1 λ2 λn−1 λn

This would introduce quite a few things to the code. However, just focusing on
α , λ1, and λ2, we see that both σαλ1 and σλ1λ2 are in the code, meaning this
case also results in contradiction. Thus, C must be max intersection complete. �
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Three for the Price of Three!

Theorem
Let C be a 3-sparse locally good max intersection incomplete code. Then there
must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct
facets M1,M2, . . . ,Mn.

Then there must exist some neuron σ < C and Mi,Mj ∈ C such that Mi ∩ Mj = σ .

The facets Mi and Mj must be of at least length two to remain distinct, given
their shared σ .

However, if Mi and Mj were of length two, then σ would be a mandatory
codeword.
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Three for the Price of Three!

Proof.

So Mi and Mj must be of length three.

However, this could not be the entire code, as this would make σ a mandatory
codeword. As C is 3-sparse, there must exist some other facet Mk ∈ C such that
Mi ∩ Mj ∩ Mk = σ .

To remain distinct from Mi and Mj, Mk must contain some neuron τ < Mi,Mj.
However, if both Mi ∩ Mk = σ and Mj ∩ Mk = σ , then there would exist a local
obstruction at σ .

Thus, without loss of generality, there must exist some α such that
Mi ∩ Mk = σα . Therefore, as C is 3-sparse we know that Mk = σατ , completing
the proof. �
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Street Cred

De�nition
For a 3-sparse neural code, the reduced code of C, denoted Cred, is the code
containing all length three codewords of C and their subsets that are also in C.

Example
Consider the following neural code:

C =
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9,∅}.

Cred = {123, 134, 145, 13, 14,∅}
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Weapons of Mass Construction

Theorem

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex
cover U = {Ui}ni=1 inÒ

d of Cred such that every set in U can be realized as fully
Òd−1 or higher, then C is open convex.

Proof.

Let C be a 3-sparse locally good neural code on n neurons. Suppose that there
exists some fully dimensional closed cover of Cred, denoted U = {Ui}ni=1 in Ò

d.
We will construct an open cover of C using U.
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Weapons of Mass Construction

Proof.

C =
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9,∅}.

U123 U13 U134 U14 U145
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Step One: Intersections of Neurons in Cred

Proof.

C =
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9,∅}.

U123 U13 U134 U14 U145
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Step One: Intersections of Neurons in Cred

Proof.

Using the same epsilonic procedure as was used in Theorem 4.3, we can make
this new realization fully dimensional.

U123 U13 U134 U14 U145
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Step Two: Neurons in C but not Cred

Proof.

The only neurons missing from U are the ones not involved in any triple-wise
intersection. Let A = {α1, α2, . . . , αn} ⊂ C denote the set of these neurons.

Begin with some αi such that αi �res with some neuron β1 ∈ Cred.

U123 U13 U134 U14 U145
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Step Two: Neurons in C but not Cred

Proof.

In general, either αi ∈ C or it isn’t. If not, draw it as a subset of β1. If so, draw it
so that it overlaps with β1.

U123 U13 U134 U14 U145

α < Cα ∈ C
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Step Two: Neurons in C but not Cred

Proof.

Repeat this process for each 1 ≤ i ≤ n, each time selecting a codeword that
contains a neuron already existing in the realization. This provides us with a
fully dimensional closed realization of C.

Thus, by Theorem 4.3, C is convex. �
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Potential Sequels

Conjecture

Let C be a closed convex neural code on n neurons. Let U = {Ui}ni=1 in Ò
d be

an arbitrary open convex cover of C. If �lling in the boundary of each Ui ∈ U
will always create a set that can only be realized in Òd−2 or below, then C is
not open convex.

Conjecture
Let C be a locally good neural code on n neurons. If C is not open convex, then
any convex realization of C in Òd must contain a set that can only be realized
in Òd−2 or below.

Conjecture
Let C be a locally good neural code on n neurons. If n ≤ 7, then C must be
either open or closed convex.
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