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Abstract

Neural codes are a collection of binary strings that represent the possi-
ble combinations of neurons firing within a set of receptive fields. Specif-
ically in the case of place cells, these receptive fields are correlated to
convex areas in space. Thus, when dealing with neural codes in relation
to place cells, there is a desire for codes to be able to be represented with
convex receptive fields. From this desire comes the need to understand the
embedding dimensions in which codes require for convexity. And, since the
classification of open convex neural codes are more commonly researched,
this paper’s purpose is to expand upon the pre-existing knowledge of al-
ready classified embedding dimensions to explore the different relation-
ships open and closed embedding dimension. From which, we will provide
the equivalent relation between the open and closed non-degenerate em-
bedding dimensions, how non-degenerate embedding dimensions act as an
upper bound for the general embedding dimensions, and lastly a hypoth-
esis and example of the open and closed degenerate embedding dimension
relation.

1 Introduction

Neural codes play a huge role in representing neural activity in the brain.
In which, the study of convex neural codes have gained increased interest due
to neuroscience’s fascination with place cell, neurons that orient a organism’s
position in relation to their physical space which are represented through the
composition of convex areas. In which, these convex areas will be referred to
as receptive fields. And, with neural codes’ relation to place cells, there is im-
mense importance in understanding what types of spaces can be represented,
with most of the focus currently being spaces compressed of all closed or all open
convex receptive fields. Thus, it is necessary to understand what dimensions are
needed in order for a neural code to be able to have these open or closed con-
vex realization, where the minimally required dimensions are called embedding
dimensions. In this paper, we will not only explore the relation between open
and closed embedding dimension in the tradition sense of the embedding dimen-
sion, which we will refer to as the degenerate embedding dimension, but also
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the more novel concept of the non-degenerate embedding dimension, see Defn
3.1 & Defn 3.2. Specifically, we will given results on how the open and closed
non-degenerate embedding dimensions are equal to one another, and how the
degenerate embedding dimensions are less than or equal to their non-degenerate
embedding dimension. We will also provide a hypothesis and a few examples
on how we believe the open and closed degenerate embedding dimensions relate
to one another.

2 Background

A neural code C of n number of receptive fields Ui is a set of code words
cj , where cj is a binary string of length n where the digits of cj represent the
activation of neurons within the spaces of their respective receptive fields. The
set of Ui is represented by U , where (U ,Rd) denotes a realization using U in
dimension d. Given a (U ,Rd), where C = code(U ,Rd), we say that (U ,Rd) is a
realization of C. For a realization that represents a neural code C, the specific
regions laid out in U which represent a unique code word are called atoms AUcj .

U1 U2 U3
c2

Figure 1: Realization of a code C in two dimensions
C = {110, 011, 100, 010, 001, 000}

Example 1. Consider the code C = {110, 011, 100, 010, 001, 000} with the re-
alization of (U ,R2), with U = {U1, U2, U3}. The node labeled c2 represents the
code word 110, since it is in the atom AUc2 = U1 ∩ U2 ∩ U3 = U123 where U2

and U3 are present (indicated by a ”1”) and U1 is absent (indicated by a ”0”).
So, the set of atoms being {U123, U123, U123, U123, U123, U123}; notice the direct
correlation between the set of AUcj and C.

Now, having gone over the fundamentals of neural codes, we can delve into
the use of them. Specifically, in the study of place cells in neuroscience, the
neural code and its respective receptive fields represent convex physical spaces.

Definition 2.1. A convex neural code a neural code that has a realization
that can be constructed using only convex receptive fields.

Each of these convex codes, have an embedding dimension, which is the lowest
dimension such that the code can be constructed in a convex manner. To clarify,
the embedding dimension of a neural code is distinct from d which represents the
dimension of a singular given realization. Where as the embedding dimension of
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a neural code is the minimum dimension of all convex realizations of the code.
When using the term embedding dimension, we refer to the neural code rather
than of any particular realization.

Figure 2: Closed (U ,R2), Open (U ,R2), Open & Closed (U ,R3)
for Cθ = {0000, 1000, 0100, 0010, 0001, 1001, 0101, 0011, 1110}

Example 2. The code Cθ = {0000, 1000, 0100, 0010, 0001, 1001, 0101, 0011, 1110}
requires at least two dimensions to be realized. Even so, Cθ had an open em-
bedding dimension of three (given the shaded receptive field is forced to be non-
convex in the open realization (U ,R2)), despite having a closed embedding di-
mension of two. This demonstrates how the embedding dimensions of neural
codes can differ between open and closed realizations.

So, it can be seen that the dimension needed to represent a code can change
based off whether U is open or closed. So throughout this paper, we will classify
the different types of open and closed embedding dimensions and show the
relationships between them.

3 Relation Between Open and Closed
Non-degenerate Embedding Dimensions

In this section we will explain our results that show the equivalent relation
between the open and closed non-degenerate embedding dimensions of neural
codes.

Definition 3.1. A realization (U = {Ui},Rd) is non-degenerate if:

1. For any arbitrary open set So ⊆ Rd where So 6= ∅ and all AUcj where

AUcj ∩ So 6= ∅, it is also the case that int(AUcj ∩ So) 6= ∅

2. For all non-empty σ ⊆ [n] = {1, 2, · · · , n},
(⋂

i∈σ ∂Ui
)
⊆ ∂

(⋂
i∈σ Ui

)
Definition 3.2. The open/closed non-degenerate embedding dimension
of a neural code, notated as dimO nd(C) or dimC nd(C) respectively, is the low-
est dimension such that a non-degenerate realization of C can be made with
open/closed convex receptive fields.
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While the relationship between the open and closed non-degenerate embed-
ding dimensions of neural codes have not yet been explored, a lot of the ground-
work has been laid by Cruz, Giusti, Itskov, and Kronhoklm in the lemma below.

Lemma 3.3. If U = {Ui} is a convex and non-degenerate cover,then:

Ui are open =⇒ code(U ,Rd) = code(cl(U),Rd);
Ui are closed =⇒ code(U ,Rd) = code(int(U),Rd).

This states all codes that have a non-degenerate convex realization are both open
and closed convex.[1]

Theorem 3.4. Given a neural code C, the non-degenerate closed embedding di-
mension dimCnd(C) and the non-degenerate open embedding dimension dimOnd(C)
are equal to the same dimension d.

Proof. Using the results from Lemma 3.3, we will provide by induction that
dimCnd(C) = dimOnd(C) = d. Assume dimCnd(C) = dCnd and dimOnd(C) =
dOnd . There must exist some (U ,RdOnd ) of the code C. Using Lemma 3.3, we
get that C = code(cl(U),RdOnd ), which says there exist a closed realization of C
in dOnd dimensions. So, dOnd ≥ dCnd . There must also exist some (U ,RdCnd )
of the code C. Using Lemma 3.3 once more, we get an open realization of C
in dCnd dimensions; C = code(int(U),RdCnd ). So, it must also be the case that
dOnd ≤ dCnd . Thus, we can conclude that dimCnd(C) = dimOnd(C) = d.

So, we can refer to the open and closed non-degenerate embedding dimension
more generally a just the non-degenerate embedding dimension, dimnd(C) =
dnd.

4 Relation Between Non-Degenerate and
Degenerate Embedding Dimensions

Having established codes have a singular non-degenerative embedding di-
mensions regardless of open/closed-ness, see section above, we can delve into
their relation to the traditional sense of the minimal embedding dimension which
include open and closed degenerate realizations of neural codes. In which this
section will show how the embedding dimension of a neural code that include
degenerate realizations are less than or equal to its non-degenerate embedding.

Definition 4.1. The open/closed embedding dimension of a neural code,
notated as dimO d(C) and dimC d(C) respectively, is the lowest dimension such
that a realization of C can be made with open/closed convex receptive fields
regardless of degeneracy.

Theorem 4.2. Given a neural code C, both the open embedding dimensions,
dimOd(C), and the closed embedding dimension, dimCd(C), are less than or equal
to the non-degenerate embedding dimension dimnd(C).
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Proof. Consider the set of all convex realizations of a neural code C, {(Ud,Rd)h}.
By Definition, the set of convex non-degenerate realization {(Und,Rd)g} is a sub-
set of the convex realizations {(Ud,Rd)h}. Thus, {(Ud,Rd)h} can be partitioned
into two disjoint sets:

{(Ud,Rd)h} = {(Und,Rd)g} ∪
(
{(Ud,Rd)h} ∩ {(Und,Rd)g}

)
(1)

So,

dimd(C) = min
(

dimnd(C),min
(

dim
(
{(Ud,Rd)h} ∩ {(Und,Rd)g}

)))
(2)

Thus, it can be concluded that dimOd(C) ≤ dimnd(C) and dimCd(C) ≤ dimnd(C).

This shows that the non-degenerate embedding dimension can act at the
upper bound for all subsequent embedding dimensions which can be useful in
providing a broad context in understanding what types of spaces a neural code
can represent in the context of place cells.

5 Relation Between Open and Closed Degener-
ate Embedding Dimensions

The last relation that needs to be explored is the one between open and
closed embedding dimensions. In which, we will show that degenerate open
convex realizations are non-closed and visa versa. We will also provide a con-
jecture on how realizations work in dimensions greater than their embedding
dimensions, and the results that can be concluded if our conjecture is proven.

But first, we would like to state the outlier cases of degenerate embedding
dimensions which are non-open and non-closed neural codes. This is when
there does not exist an open and/or closed convex realization of a realization,
so dimOd(C) = ∞ and/or dimCd(C) = ∞ respectively. If a code is non-open
closed then it will always be the case that the closed embedding dimension is
less than the open embedding dimension and visa versa, with dimnd(C) = ∞.
Now, having explained the known outlier case, we can delve into our results and
our conjecture along with the conjecture’s possible implications if it is proven.

First, we will show our results on convex degenerate cover, which states that
open degenerate realizations are not valid closed realizations of the same code,
and visa versa. But, we will require the following result from [1].

Lemma 5.1. Assume that U = {Ui} is a finite cover by convex sets. Then:

(i) if all Ui are open and U satisfies Definition 3.1(2), then it also satisfies
Definition 3.1(1).
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(ii) if all Ui are closed and U satisfies Definition 3.1(1), then it also satisfies
Definition 3.1(2).

Theorem 5.2. If U = {Ui} is a convex and degenerate cover, then:

(i) (U ,Rd) is an open realization of a neural code C =⇒ (cl(U),Rd) is not a
closed realization of C

(ii) (U ,Rd) is an closed realization of a neural code C =⇒ (int(U),Rd) is not
a open realization of C.

Proof. We prove (i) and (ii) by induction:
(i): Assume U is open convex and degenerate. By Lemma 5.1, there exists
some σ ⊆ [n] = {1, 2, · · · , n} such that

(⋂
i∈σ ∂Ui

)
* ∂

(⋂
i∈σ Ui

)
. This can

be rewritten as
(⋂

i∈σ(cl(Ui) \ Ui)
)
*
(
cl
(⋂

i∈σ Ui
)
\
(⋂

i∈σ Ui
))

. So, there ex-

ists a non-empty set of elements {x} ∈
(⋂

i∈σ(cl(Ui) \ Ui)
)

such that {x} /∈(
cl
(⋂

i∈σ Ui
)
\
(⋂

i∈σ Ui
))

. Let {x} be the atom for the code word cx = σ,

i.e. if σ = {1, 3} then cx = 101.
(⋂

i∈σ(cl(Ui) \ Ui)
)

=
⋂
i∈σ cl(Ui) ∩

⋂
i∈σ Ui,

and
(
cl
(⋂

i∈σ Ui
)
\
(⋂

i∈σ Ui
))

= cl
(⋂

i∈σ Ui
)
∩
(⋃

i∈σ Ui
)
.
⋂
i∈σ Ui ⊆

⋃
i∈σ Ui,

so it must be the case that Acx ∈
⋂
i∈σ cl(Ui), Acx /∈ cl

(⋂
i∈σ Ui

)
. Since⋂

i∈σ Ui ⊆ cl
(⋂

i∈σ Ui
)
, Acx /∈

⋂
i∈σ Ui. Thus, code(U ,Rd) 6= code(cl(U),Rd).

(ii): Assume U is closed convex and degenerate. By Lemma 5.1, there exists
some open set So ⊆ Rd where So 6= ∅ and an AUcx where AUcx ∩ So 6= ∅ and
int(AUcx ∩ So) = ∅, i.e. AUcx is not top dimensional. AUcx =

⋂
Ui \

⋃
Uj , so

AUcx =
⋂
Ui ∩ S where S =

⋂
Uj is open (and by extension top dimensional).

So, it must be the case that
⋂
Ui is not top dimensional. Since all Ui are closed

convex,
⋂
Ui must also be closed convex. So, since

⋂
Ui is closed convex and not

top dimensional, int(
⋂
Ui) = ∅. int(AUcx) ⊆ int(

⋂
Ui) = ∅, thus int(AUcx) = ∅

meaning a code word cx is lost. Thus, code(U ,Rd) 6= code(int(U),Rd).

This theorem acts as an extension of a theorem presented by Cruz et. al in
[1] which is restated in this paper as Lemma 3.3. This gives more context to
the definition of what it means to be a degenerate realization. Specifically, its
contrapositive provides a nice corollary on realizations that are both open and
closed convex:

Corollary 5.3. If U = {Ui} is a convex cover and C = code(cl(U),Rd) =
code(int(U),Rd), then (U ,Rd) is a non-degenerate realization of C.

Conjecture 5.4. Let C have an embedding dimension of d. For all convex real-
izations with an embedding dimension greater than their respective neural code’s
embedding dimension,

(
U ,Rdθ≥d

)
, is homotopy equivalent to a realization of the

neural code in the code’s embedding dimension where the intermediate realiza-
tions that undergone a continuous deformation are valid realizations (convex
and the code remains unchanged).
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Conjecture 5.4 has been consistent with all of our observations thus far, so
we believe it likely to be true. To better illustrate the ideas of this conjecture
we have provided an example below:

U1

U2

U3

U1

U2

U3

U1 U2 U3

U1

U2

U3

Figure 3: The continuous deformation of C from d = 3 to d = 1
C = {110, 011, 100, 010, 001, 000}

Example 3. Consider a realization of the neural code:

C = {110, 011, 100, 010, 001, 000}

in three dimensions, shown in Figure 3. We observed that (U ,R3) of C is ho-
motopy equivalent to a realization in its embedding dimension of one.

If conjecture 5.4 can be proven, it will have wide implications in understand-
ing how open and closed degenerate embedding dimensions are related to one
another.

6 Rigid Structures of Non-closed Convexity

To better clarify the outlier case of non-closed neural codes, this section we
will be discussing non-closed convex neural codes, and the geometric mechanisms
we have identified that make the known cases of neural codes non-closed convex;
seen in [3] as C6, C10, C15.

Definition 6.1. Let C be a neural code on n neurons. A subset of [n] is rigid
if every convex closed realization of Clτ , a code restricted to neurons in τ ⊆ [n],⋃
i∈R Ui is convex.

Definition 6.2. Let C be a neural code on n neurons. Assume that Clτ , a code
restricted to neurons in τ , has a rigid subset R ⊆ τ . A connector of R in
C is a subset C ⊆ [n] \ τ such that closed convex realization of C,

⋂
i∈C Ui and
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intersects two subsets atoms of ClR such that a line segment can not be drawn
between these two subsets atoms of R without passing through another atom of
R.

10100 10110 00110 01110 01010

10000 01000

11000

10101 0101100001

Figure 4: Top: Closed Realization of C10 without C = {10101, 01011, 00001}
restricted to {U1, U2, U3, U4} (rigid subset shaded); Bottom: Realization of C
C10 = {10110, 10101, 01110, 01011, 11000, 10100, 01010, 00110, 10000, 01000, 00001} from [3]

Example 4. Consider the neural code:

C10 = {10110, 10101, 01110, 01011, 11000, 10100, 01010, 00110, 10000, 01000, 00001}

We can consider U3 ∪ U4 as rigid and U5 as the connector of the neural code.

Theorem 6.3. If a neural code C contains both a rigid structure R and a
connector C for R, then C is non-closed convex or non-convex.

Proof. Assume for contradiction that {Ui}i∈[n] is a closed convex realization in
C. Then by definition

⋃
i∈R Ui is convex. Also by definition,

⋂
i∈C Ui intersects

two atoms of R. Now, consider the two points c1, c2 ∈ C where C connects to
R. Given our assumptions

⋃
i∈R Ui is convex, the line between c1 and c2 is

completely in
⋃
i∈R Ui. But, by definition, line segment between the two atoms

are not completely contained in
⋂
i∈C Ui. So,

⋂
i∈C Ui is not convex, which is a

contradiction.

Theorem 6.3 can be applied to all non-closed convex neural codes seen in [3],
with C10 shown in Figure and Example 4 above, and the rest below:
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10001 11001 11000 11100 01100

10011 00010 01110

Figure 5: Top: Closed Realization of C6 without C = {10011, 00010, 01110}
restricted to {U1, U2, U3, U5} (rigid subset shaded); Bottom: Realization of C

C6 = {11001, 11100, 10011, 01110, 10001, 11000, 01100, 00010} from [3]

Example 5. Consider the neural code:

C6 = {11001, 11100, 10011, 01110, 10001, 11000, 01100, 00010}

We can consider U1∪U2∪U3∪U5 as rigid and U4 as the connector of the neural
code.

10001 10011 00011 00111 00110 01110 01100

11001 11000 11100

Figure 6: Top: Closed Realization of C15 without C = {11001, 11000, 11100}
(rigid subset shaded); Bottom: Realization of C

C15 = {10011, 00111, 01110, 11001, 11100, 10001, 00011, 00110, 01100, 11000} from [3]

Example 6. Consider the neural code:

C15 = {10011, 00111, 01110, 11001, 11100, 10001, 00011, 00110, 01100, 11000}

Unlike in Example 4 and 5, rather than a union of entire receptive fields being
rigid, the rigid subset is a union of atoms. With a connector C = {11001, 11000, 11100},
R = C15 \ C. Another unique aspect of C15 is that there exists multiple (R,C)
pairs:

• C = {11001, 11000, 11100}

• C = {11100, 01100, 01110}

• C = {01110, 00110, 00111}

• C = {00111, 00011, 10011}

• C = {10011, 10001, 11001}

where in each case stated above, R = C15 \ C.
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7 Non-degenerate Neural Codes on up to Four
Neurons

In our discussion of minimal embedding dimension we have shown that de-
generacy is an important characteristic in a neural code. It is then in our interest
to understand which codes are known to be non-degenerate. In this section we
present results on a classification of neural codes that are non-degenerate.

Theorem 7.1. Let C be a neural code with no local obstructions on n ≤ 4
neurons. Then, C is realizable by a convex, non-degenerate cover.

Proof. Curto et. al. [2] showed that for codes up on up to 4 neurons, no
local obstructions is equivalent to max-intersection complete. By Theorem 1.2
and Theorem 2.12 in [1] a neural code C that is max intersection-complete is
realizable by a convex, non-degenerate cover. Therefore all codes on n ≤ 4
neurons are realizable by a convex, non-degenerate cover.

8 Discussion

In this paper we identified a method of classifying embedding dimensions of
neural codes based on the degeneracy of the realizations, and found the rela-
tionships between them. From which, we showed results on how there is only
a singular non-degenerate embedding dimension (shown in Theorem 3.4), how
the non-degenerate embedding dimension acts as an upper bound for all other
embedding dimension (shown in Theorem 4.2), and provided a Conjecture 5.4
that provides an outline for how we believe realizations behave in a dimension
greater than their neural code’s embedding dimension. All of which, we believe
will aid in the goal of understand what types of spaces can a neural code repre-
sent in relation to place cells.
If one is searching for the next question for exploration, we believe it a worth-
while task would be to understand which neural codes have non-degenerate re-
alizations, i.e. if a code is open and closed convex, does that imply the existence
of a non-degenerate realization?
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