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Abstract. We study a generalized version of the Dedekind sum associated with a pair of non-
trivial primitive Dirichlet characters χ1 and χ2, denoted Sχ1,χ2 . We investigate the kernel of the
crossed homomorphism Sχ1,χ2 ∶ Γ0(q1q2) → C by expanding the work of Dillon and Gaston who
showed that Sχ1,χ2 is nontrivial. We apply the work of Stucker, Vennos, and Young to show that the
kernel of Sχ1,χ2 is strongly nontrivial. We also show properties of the kernel that lead to interesting
symmetries graphically and examine the kernel’s relationship with the commutator subgroup of
Γ0(q1q2).

1. Introduction

1.1. Background and prior work. Dedekind sums were first introduced by Richard Dedekind
as a way to express the transformation formula satisfied by the Dedekind η-function. Throughout
the years, the study of Dedekind sums have shown up in different areas of mathematics including
algebraic number theory and combinatorial geometry. In this paper we study a generalization of
the Dedekind sum associated to a pair of Dirichlet characters studied in [5] and [3]. Let h, k be
coprime integers with k ≥ 1. The classical Dedekind sum is defined by:

s(h, k) = ∑
n mod k

B1 (
n

k
)B1 (

hn

k
) , (1)

where B1 denotes the first Bernoulli function

B1(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x − ⌊x⌋ − 1
2 if x ∈ R ∖Z

0 if x ∈ Z.
(2)

For more background on the Dedekind η-function and the classical Dedekind sum, we refer the
reader to [1].

Many different generalized versions of the Dedekind sum have appeared in the literature. In
this paper, we further study the newform Dedekind sum studied recently by Stucker, Vennos, and
Young in [5]; see their introduction for a more thorough historical survey of previous work on these
types of Dedekind sums. Throughout we let χ1 and χ2 be primitive Dirichlet characters modulo q1
and q2, respectively, with q1, q2 > 1. We let Γ0(q1q2) denote the congruence subgroup of level q1q2.
We take Theorem 1.2 from [5] as a definition of the newform Dedekind sum associated to a pair of
Dirichlet characters, restated here:

For γ = ( a bc d ) ∈ Γ0(q1q2) with c > 0 and χ1χ2(−1) = 1, define the newform Dedekind sum as

Sχ1,χ2(γ) = ∑
j mod c

∑
nmod q1

χ2(j)χ1(n)B1 (
j

c
)B1 (

n

q1
+
aj

c
) . (3)

For simplicity, we will often refer to the newform Dedekind sum simply as the Dedekind sum. Since
the Sχ1,χ2(γ) in (3) only depends on the first column of γ, we will often write Sχ1,χ2(a, c) in place
of Sχ1,χ2(γ).
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Let ψ = χ1χ2, and for γ = ( a bc d ) ∈ Γ0(q1q2), we define ψ(γ) = χ1χ2(d). The most important basic
property of the Dedekind sum Sχ1,χ2 ∶ Γ0(q1q2) → C is that it is a crossed homomorphism, which
we record with the following:

Theorem 1.1. For all γ1, γ2 ∈ Γ0(q1q2), we have

Sχ1,χ2(γ1γ2) = Sχ1,χ2(γ1) + ψ(γ1)Sχ1,χ2(γ2). (4)

A proof can be found in [5, Lemma 2.2]. We remark that [5, Definition 1.1] started with a
different definition of the Dedekind sum (via a kind of generalized Kronecker limit formula for the
newform Eisenstein series Eχ1,χ2) from which (4) was easy to show (in contrast to (3)). After
some additional work, they derived the finite formula (3), which is only valid for c > 0. However,
it is easy to see from the original definition that for c = 0 we have Sχ1,χ2(1,0) = 0, and that
Sχ1,χ2(−a,−c) = Sχ1,χ2(a, c), which takes care of c < 0.

Remark 1.2. For γ ∈ Γ1(q1q2), then ψ(γ) = 1. Therefore, the crossed homomorphism Sχ1,χ2

becomes a group homomorphism from Γ1(q1q2) into (C,+).

The reciprocity formula for the classical Dedekind sum is one of its most interesting and important
features. The following reciprocity formula for Sχ1,χ2 is proved in [5] via the action of the Fricke

involution ω = ( 0 −1
q1q2 0 ).

Theorem 1.3 (Reciprocity formula [5]). For γ = ( a b
cq1q2 d

) ∈ Γ0(q1q2), let γ′ = ( d −c
−bq1q2 a ) ∈ Γ0(q1q2).

If χ1, χ2 are even, then

Sχ1,χ2(γ) = Sχ2,χ1(γ
′
). (5)

If χ1, χ2 are odd, then with τ(χ) denoting the standard Gauss sum, we have

Sχ1,χ2(γ) = −Sχ2,χ1(γ
′
) + (1 − ψ(γ))(

τ(χ1)τ(χ2)

(πi)2
)L(1, χ1)L(1, χ2). (6)

Our main interest in this paper is to understand the structure of the kernels of the Dedekind
sums. To make our objects of interest more precise, we make the following definition.

Definition 1.4. Let χ1 and χ2 be non-trivial primitive Dirichlet characters modulo q1 and q2,
respectively, with q1, q2 > 1. Then we denote the kernel associated to χ1, χ2, by

Kχ1,χ2 = ker(Sχ1,χ2) = {γ ∈ Γ0(q1q2) ∶ Sχ1,χ2(γ) = 0} .

We let K1
χ1,χ2

denote Kχ1,χ2 ⋂Γ1(q1q2). Moreover, we define

Kq1,q2 = ⋂
χ1,χ2

χ1χ2(−1)=1

Kχ1,χ2 ,

where χi runs over primitive characters modulo qi, i = 1,2. We similarly letK1
q1,q2 =Kq1,q2 ⋂Γ1(q1q2).

Remark 1.5. One can similarly consider Kχ1,χ2 ⋂Γ(q1q2), but since Sχ1,χ2 depends only on the
first column of γ, this is essentially the same as K1

χ1,χ2
. More precisely, what we mean here is that

Γ1(q1q2) = ⋃b Γ(q1q2)( 1 b
0 1 ), and ( 1 b

0 1 ) is trivially in the kernel of any Dedekind sum.

The following theorem of Dillon and Gaston [3] shows that Sχ1,χ2 is non-trivial in a strong sense:

Theorem 1.6 (Strong nontriviality [3]). For each c > 0 such that q1q2∣c, there exists an a so that
Sχ1,χ2(a, c) ≠ 0.

Remark 1.7. One way to interpret this result of Dillon and Gaston is that it shows that Kχ1,χ2 is
not “too big” (keeping account of the size of c, the lower-left entry of elements of Γ0(q1q2)).
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Our first main result shows that K1
q1,q2 is not “too small.”

Theorem 1.8 (Kernel is strongly nontrivial). For every c ∈ Z, there exists γ = ( a b
cq1q2 d

) ∈ Γ(q1q2)

such that γ ∈K1
q1,q2.

Next we discuss some relationships between commutator subgroups and kernels of the newform
Dedekind sums. We begin with a general discussion. If G is a group, we let [G,G] denote its
commutator subgroup (i.e., the smallest subgroup of G containing all commutators xyx−1y−1 with
x, y ∈ G). It is well-known (and easy to check) that if ϕ ∶ G → H is a group homomorphism, with
H abelian, then [G,G] ⊆ ker(ϕ). We also recall that the abelianization of a group, denoted Gab

is defined by Gab = [G,G]/G. It is known that the abelianization of G = SL2(Z) is Z/12Z, which
implies that there are no non-trivial group homomorphisms from SL2(Z) to C. Theorem 1.6 is in
sharp contrast to the level 1 case.

One naturally is led to wonder to what extent the commutator subgroups of Γ0(q1q2), Γ1(q1q2),
etc. account for the kernels of the Dedekind sums. Our second main result shows that K1

q1,q2 is
much larger than the commutator subgroup of Γ(q1q2) (cf. Remark 1.5).

Theorem 1.9. We have [Γ(q1q2),Γ(q1q2)] ⊊K
1
q1,q2.

Remark 1.10. In fact, we show in Proposition 3.1 below that [Γ(q1q2),Γ(q1q2)] ⊆ Γ(q21q
2
2). In

contrast, Theorem 1.8 produces elements that are clearly not in Γ(q21q
2
2) (indeed, there is no restric-

tion on the lower-left entry besides divisibility by q1q2). This explains why we stated that K1
q1,q2 is

much larger than the commutator subgroup.

Our final main observation is that there exists a natural Galois action on the Dedekind sums,
which can easily be read off from (3). This is discussed in Section 4.

2. Numerical data and proof of Theorem 1.8

We begin this section with some numerical calculations of Kq1,q2 . We let (a, c) represent the left
column of γ ∈ Γ0(q1q2). By (3), it can be shown that Sχ1,χ2(a, c) = Sχ1,χ2(b, c) where a ≡ b mod c.
Therefore, we only need to examine the pairs (a, c) such that a ∈ {1, ..., c− 1}. Using SageMath [6],
for all primes 3 ≤ q1, q2 ≤ 11, we computed the elements of Kχ1,χ2 ,K

1
χ1,χ2

,Kq1,q2 , and K1
q1,q2 with

1 ≤ c ≤ 10q1q2, directly using the finite sum formula (3) as our definition. Consider the example in
Figure 1a where q1 = q2 = 5 in which we display the elements of Kq1,q2 for 1 ≤ c ≤ 250.

(a) K5,5 (b) K7,3

Figure 1. Kq1,q2 for 1 ≤ c ≤ 10q1q2

From Figure 1a, Figure 1b, and other similar graphs, we found the vertical line formed when a = 1
to consistently appear. We prove this in Corollary 2.4. We also found other lines corresponding to
similar patterns shown in the following propositions.
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Proposition 2.1. Let χ1 and χ2 be non-trivial primitive Dirichlet characters modulo q1 and q2,
respectively, with q1, q2 > 1. Then Sχ1,χ2(1, q1q2) = 0.

Proof. We take γ = ( 1 0
q1q2 1 ) in Theorem 1.3, so γ′ = ( 1 −1

0 1 ). It is easy to see that Sχ1,χ2(γ
′) = 0,

and that 1 − ψ(γ) = 0. Therefore, Proposition 2.1 follows from the reciprocity formula. �

In [3], Dillon and Gaston showed that for c ≥ 1 and q1q2∣c,

Sχ1,χ2(−a, c) = −χ2(−1)Sχ1,χ2(a, c). (7)

Letting c = q1q2 and a = 1 in (7), we can use Proposition 2.1, to conclude that Sχ1,χ2(q1q2 −
1, q1q2) = 0. Moreover, using (7), one can easily observe that for a (mod c), if Sχ1,χ2(a, c) = 0 then
Sχ1,χ2(c − a, c) = 0. This symmetry between the pairs (a, c) and (c − a, c) can be seen in Figure 1
above.

Proposition 2.2. Let χ1 and χ2 be non-trivial primitive Dirichlet characters modulo q1 and q2,
respectively, with q1, q2 > 1. Then if Sχ1,χ2(1+ndq1q2, d

2q1q2) = 0 for some n, d ∈ Z, then Sχ1,χ2(1+
kndq1q2, kd

2q1q2) = 0 for all k ∈ Z.

Remark 2.3. Proposition 2.2 can be used to explain some linear patterns visible among the points
in Figure 1. For instance, we have a = 51, c = 100 in K5,5 visible in Figure1a, which corresponds to
d = 2, n = 1, in Proposition 2.2. The point a = 101, c = 200 corresponds to k = 2 in Proposition 2.2.

Proof. We prove this by showing an interesting property of matrices of the form

γ = (
1 + ndq1q2 −n2q1q2
d2q1q2 1 − ndq1q2

) = I +QA, where A = (
nd −n2

d2 −nd
) , Q = q1q2.

Note that A2 = 0. Using this, one can easily show that γk = I + kQA, for any k ∈ Z. Therefore, if
γ ∈Kχ1,χ2 , then so is γk, which translates to the desired statement. �

Corollary 2.4. Let χ1 and χ2 be primitive Dirichlet characters modulo q1 and q2, respectively,
such that q1, q2 > 1 and χ1χ2(−1) = 1. Then Sχ1,χ2(1, kq1q2) = 0 for all k ∈ Z.

Proof. We apply Propositions 2.1 and 2.2, with n = 0 and d = 1. �

The points (1, c) create a vertical line, depicted in Figure 1 above. Similarly, one can use (7) to
conclude that the points (c − 1, c) create a line of slope 1, also depicted in Figure 1.

Now we prove Theorem 1.8. By Corollary 2.4, we have that ( 1 0
cq1q2 1 ) ∈ K

1
χ1,χ2

, for all choices of
χ1, χ2, so the result follows immediately. �

Remark 2.5. Figure 1 indicates that there exist examples of q1, q2 and c for which the only element
(a, c) ∈ K1

q1,q2 with 0 < a < c is the point exhibited in Corollary 2.4. In this sense, Corollary 2.4 is
sharp.

3. The commutator subgroup: Proof of Theorem 1.9

For any prime p, let Γ(n;p) denote the principal congruence subgroup of SLn(Z) of level p. In
[4], Lee and Szczarba show that the commutator subgroup [Γ(n;p),Γ(n;p)] = Γ(n;p2) for n ≥ 3
and all primes p. In the following proposition, we adapt the proof of Lee and Szczarba to show a
one-sided containment of the commutator subgroup for n = 2 and p not necessarily prime.

Proposition 3.1. For any Q ≥ 1, then [Γ(Q),Γ(Q)] ⊆ Γ(Q2).

Proof. Define the map ϕ ∶ Γ(Q)→M2×2(Z/QZ) by ϕ(A) = A−I
Q (mod Q). It is not difficult to show

ϕ is a group homomorphism. Since M2×2(Z/QZ) is abelian, then [Γ(Q),Γ(Q)] ⊆ ker(ϕ). We can
see that ker(ϕ) = Γ(Q2) by the definition of ϕ. �

4



Remark 3.2. Lee and Szczarba additionally show that the image of ϕ is the subset of M2×2(Z/QZ)

of trace ≡ 0 mod Q.

Proposition 3.1 shows that [Γ(q1q2),Γ(q1q2)] ⊆ Γ(q21q
2
2). From Proposition 2.2 and Corollary

2.4, we see that the inclusion is strict, i.e. Γ(q21q
2
2) ⊊K

1
q1,q2 .

4. The Galois action

We now study the kernels further by comparing Kχ1,χ2 for different choices of χ1, χ2, with a

specified choice of q1, q2. Let ζn = e
2πi/n. Figure 2 depicts K1

χ1,χ2
for the Dedekind sum associated

to χ1 mod 5, the character mapping 2 ↦ i, and χ2 mod 11, which maps 2 ↦ ζ10, for 0 < c ≤ 1100.
However, we found that Figure 2 also represents the kernel for other characters, such as the pair
χ′1 mod 5 ∶ 2↦ −i and χ′2 mod 11 ∶ 2↦ ζ310.

Figure 2. K1
χ1,χ2

for χ1 mod 5 and χ2 mod 11

This reoccurring pattern of identical kernels was found for other conductors q1, q2 as well. To
explain this pattern we turn to Galois theory. For two characters χ1, χ2 mod q1 and q2 respectively,
we let F = Q (ζφ(q1), ζφ(q2)) = Q(ζ[φ(q1),φ(q2)]) be the rational field extension over Q containing the
φ(q1) and φ(q2)-th primitive roots of unity. Let

Ded(q1, q2) = {Sχ1,χ2 ∣ χ1χ2(−1) = 1 and χi primitive modulo qi, i = 1,2}. (8)

For σ ∈ Gal(F /Q), and χ a Dirichlet character taking values in F , let χσ denote the character
defined by n → σ(χ(n)). By the definition of the Dedekind sum in (3), we see that Sχ1,χ2(γ) lies
in F , for all γ ∈ Γ0(q1q2), since the values taken by the Bernoulli function B1 in (3) are rational.

Proposition 4.1. Let F = Q (ζφ(q1), ζφ(q2)). Then there exists a natural group action of Gal(F /Q)

on Ded(q1, q2) which we denote as Sσχ1,χ2
for σ ∈ Gal(F /Q).

Proof. We define the natural Galois action by Sσχ1,χ2
(γ) ∶= σ(Sχ1,χ2(γ)), which by the definition

(3) equals Sχσ1 ,χσ2 (γ), for any γ ∈ Γ0(q1q2). From this definition it is easy to see that this is a group
action. �

Remark 4.2. If k ∈ Z is coprime to φ(q1)φ(q2), the mapping ω → ωk, where ω is a primitive root
of unity in F , is an automorphism of F . In fact, all automorphisms in the Gal(F /Q) can be formed
this way.

Corollary 4.3. If two Dedekind sums, Sχ1,χ2 and Sχ′1,χ′2 , are in the same orbit of Ded(q1, q2) under

the action of Gal(F /Q), then Sχ1,χ2 and Sχ′1,χ′2 have the same kernel.
5



Remark 4.4. Corollary 4.3 implies that when studying the kernel of Dedekinds sums associated to
specified q1, q2, we only need to examine a representative for each orbit, which leads to a significant
efficiency in computation.

Proof. The statement that Sχ1,χ2 and Sχ′1,χ′2 lie in the same orbit simply means that there exists

σ ∈ Gal(F /Q) so that χ′1 = χ
σ
1 and χ′2 = χ

σ
2 . It is clear that if γ ∈Kχ1,χ2 , then γ ∈Kχσ1 ,χ

σ
2

also. �

Considering the example in Figure 2, letting k = 3 we see that

● q1 = 5 ∶ χ1(2)
3 = i3 = −i = χ′1(2)

● q2 = 11 ∶ χ2(2)
3 = ζ310 = χ

′

2(2).

It then follows that the Dedekind sums associated to the two pairs of characters are in the same
orbit and subsequently have the same kernel, corroborating our corollary.
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