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Abstract

Neural codes, represented as collections of binary strings called codewords, are used to encode neural
activity. A code is called convex if its codewords are represented as an arrangement of convex sets in
Euclidean space. Previous work has focused on addressing the question: how can we tell when a neural
code is convex? Giusti and Itskov [3] identified a local obstruction and proved that convex neural codes
have no local obstructions. Curto et al. [2] proved the converse for all neural codes on at most four
neurons. Lienkaemper et al. [4] provided a counterexample on five neurons to show that this converse is
false in general. In fact, unless the maximal codewords intersect in a specific way, convexity is equivalent
to being max intersection-complete. In this paper, we prove that the converse holds for all codes with up
to three maximal codewords. We also prove results on contractibility, provide convex realizations for all
codes, and prove the minimal embedding dimension of such codes is at most two.

1 Introduction

The brain encodes spatial structure through hippocampal neurons known as place cells, which are associated
with regions of space called receptive fields. Place cells fire at a high rate precisely when the animal is in
that receptive field. The firing pattern of these neurons form what is known as a neural code. A neural code
is convex if it is associated to convex receptive fields. Understanding the convexity of such codes provides
insight into how hippocampal neurons affect brain function.

In this paper we focus our attention on characterizing neural codes with few maximal codewords, more
specifically codes with three maximal codewords. In the following sections, we define a relationship between
codewords, receptive fields, and their convexity. Past work on neural codes with one maximal codeword is
widely understood [5] and we provide a proposition for codes with two maximal codewords below. However,
such understanding is not complete on neural codes with three maximal codewords.

In this paper, we prove results that completely characterize the convexity of codes with three maximal
codewords. First, we prove when links of the resulting simplicial complexes are contractible. Then, we show
that the relationship: max intersection-complete⇔ convex⇔ no local obstructions, holds. Guisti and Itskov
[3] identified a local obstruction and proved that convex neural codes have no local obstructions.

In our work, we start by assuming that codes have no local obstructions. Thus, two cases arise. The first
case has a non-contractible link of the triplewise intersection of maximal codewords. By the definition of
no local obstructions, the code must be max intersection-complete which implies convexity. The second
case is when the link of the triplewise intersection is contractible, in which the code doesn’t have to be
max intersection-complete to imply no local obstructions. Here, we construct a convex realization to prove
convexity. Next, we provide both convex open and convex closed realizations for codes with three maximal
codewords. Additionally, we prove the minimal embedding dimension is at most two.

In Section 2, we introduce definitions, notation, and previous results. In Section 3, we provide results on
contractibility, convexity relationships, convex realizations, and minimal embedding dimensions.
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2 Background

In this section, we introduce definitions, notations, and previous results.

2.1 Neural Codes

In a biological context, a codeword represents a set of neurons that fire together while no other neurons fire.
A neural code is a set of such codewords, which broadly characterize the combinations of such neurons.

Definition 2.1. A neural code C on n neurons is a set of subsets of [n] (called codewords), i.e. C ⊆2[n].
A maximal codeword (also called a facet) in C is a codeword that is not properly contained in any other
codeword in C.

Definition 2.2. For a neural code C on n neurons, a collection U = {U1, U2, ..., Un} of subsets of a set X
realizes C if a codeword σ is in C if and only if (

⋂
i∈σUi) \

⋃
i/∈σUi is nonempty.

Definition 2.3. A neural code is:

1. max intersection-complete if it contains all intersections of maximal codewords in C.

2. a good-cover code if it can be realized by a good cover U = {U1, U2, ...Un} of some set X ⊆ Rd.

3. convex open if it can be realized by a set of convex open sets U1, U2, ...Un ⊆ Rd. A code’s minimal
embedding dimension is the smallest value of d for which this is possible.

4. convex closed if it can be realized by a set of convex closed sets U1, U2, ...Un ⊆ Rd. For closed convex
codes, the minimal embedding dimension is the minimal d that allows a closed convex realization of C.

Example 2.1. Consider the code C = {1234, 12, 4, 3, ∅}, where the maximal codeword is in bold. We
interpret this code to mean four neurons fire together in this pattern. There is a region where all four
neurons fire together, however, there is not a region for each individual neuron to fire, as neuron 1 and 2
always fire together. A convex realization of this code is seen below:

1234

4

12 3

Now we recall a result of Cruz et al. [1] concerning the minimal embedding dimension for codes that are max
intersection-complete:

Lemma 2.1. If C is a max intersection-complete codes with exactly k maximal codewords, then C has both
convex open and convex closed realizations and the minimal embedding dimension is at most k. The minimal
code Cmin, the smallest code with no local obstructions, can be realized in dimension k − 1.

2.2 Simplicial Complexes

Definition 2.4. An abstract simplicial complex on n vertices in a nonempty set of subsets (faces) of [n] that
is closed under taking subsets.

For a code C on n neurons, ∆(C) is the smallest simplicial complex on [n] that contains C:

∆(C) : = {ω ⊆ [n] | ω ⊆ σ for some σ ∈ C}.
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Facets are the faces of the simplicial complex that are maximal with respect to inclusion. Note that two codes
on n neurons have the same simplicial complex, ∆, if and only if they have the same facets, thus maximal
codewords.

Definition 2.5. For a face σ ∈ ∆, the link of σ in ∆ is the simplicial complex:

Lkσ(∆) := {ω ⊆ ∆ | σ ∩ ω = ∅, σ ∪ ω ∈ ∆}.

Example 2.2. The simplicial complex ∆ whose facets are {1356, 123, 124} and link of the triplewise inter-
section, 1356 ∩ 123 ∩ 124 = 1, are illustrated below:

4
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5

Figure: ∆ Figure: Lk1∆
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Definition 2.6. A set is contractible if it can be reduced to one of its points by a continuous deformation.

From the figure above, Lk1∆ is contractible as it it homotopy-equivalent to a single point.

Now we state a previous result that is important for determining the contractiblity of intersections of maximal
codewords.

Lemma 2.2 (Curto et al. [2]). Let ∆ be a simplicial complex. If σ = τ1 ∩ τ2, where τ1, τ2 are distinct facets
of ∆, and σ is not contained in any other facet of ∆, then Lkσ(∆) is not contractible.

This result is important for determining the contractibility of codes with three maximal codewords, as we do
in Section 3. We only check the links of the triplewise intersections, as the links of the pairwise intersections
that are distinct from the triplewise are either represented in the triplewise intersection, or the triplewise
intersection is automatically non-contractible. Further on contractibility, we must introduce the definition of
nerve, as well as the nerve lemma.

Definition 2.7. For,W, a collection of subsets {W1,W2, · · · ,Wn} of a set X , the nerve ofW is the simplicial
complex that records the intersection patterns among the sets:

N (W) := {I ⊆ [n]|
⋂
i∈IWi is nonempty}.

Lemma 2.3 (Lienkaemper, Shiu, Woodstock, Lemma 5.1 [4]). Let Lkσ(∆) where σ is an intersection of
facets of the simplicial complex, ∆. Then, we know that Lkσ(∆) ' N (Lσ(∆)).

This lemma is a strong tool for analyzing the contractibility of codes. In Section 3, we prove the contractilbity
of codes using homotopy-equivalences, as proved by Lienkaemper, Shiu, and Woodstock with the nerve lemma.

2.3 Local Obstructions

Definition 2.8. Let C be a code with simplicial complex ∆ = ∆(C). A local obstruction occurs when the
link of the intersection of some maximal codewords in the simplicial complex, Lkσ(∆), is not contractible
and σ is not in the code.
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As defined by Lienkaemper et al. in Definition 2.9 [4]:

Definition 2.9. A face σ of simplicial complex ∆ is a mandatory codeword if it is the nonempty intersection
of a set of facets of ∆ such that Lk∆(σ) is non-contractible.

Thus, there are no local obstructions if and only if the code contains all mandatory codewords. Previous
work has focused on addressing the question: how can we tell a neural code is convex? Giusti and Itskov [3]
identified a local obstruction and proved that convex neural codes have no local obstructions.

Furthermore, there is a well known relationship that max intersection-complete ⇒ convex ⇒ no local ob-
structions [1]. The first converse is proven to be false in general, and the second converse holds for codes up
to two maximal codewords.

Theorem 2.1. Let C be a neural code with two maximal codewords. Then C is convex ⇔ C has no local
obstructions.

Proof. The proof follows easily from the proof of Lemma 2.2.

The following proposition indicates the complete relationship for codes with two maximal codewords.

Proposition 2.1. Assume C is a neural code with two maximal codewords. Then convex ⇔ no local
obstructions ⇔ max intersection-complete.

In order to fully characterize codes with three maximal codewords, this converse must be proven for codes
with three maximal codewords.

3 Main Results

In the following sections, we completely characterize codes with three maximal codewords. We provide results
on how to determine the contractibility of codes, how to realize such codes convexly, and how the minimal
embedding dimensions of these codes change when more non-maximal codewords are added.

Our paper revolves around the known relationship that max intersection-complete ⇒ convex ⇒ no local
obstructions. In the following sections, we prove that max intersection-complete ⇔ convex (open/closed) ⇔
no local obstructions.

3.1 Contractibility

In this section we show how to determine the contractibility of the link of the triplewise intersection for neural
codes with three maximal codewords. Since we are assuming the code has no local obstructions, if the link
of the triplewise intersection is non-contractible, then the code must be max intersection-complete. However,
in the case that the link of the triplewise intersection is contractible, we must provide a convex realization to
prove that no local obstructions implies convexity. By Lemma 2.2, it is sufficient to only show that the link
of the triplewise intersection is non-contractible, as done below.

Theorem 3.1. Let ∆ be a simplicial complex with exactly three facets, F1, F2, and F3.

1. If F1 ∩ F2 ∩ F3 = ∅ and Fi ∩ Fj 6= ∅ (for some 1 ≤ i < j ≤ 3), then Lk(Fi∩Fj)∆ is non-contractible.

2. Assume F1∩F2∩F3 = σ 6= ∅. Let E12 = (F1∩F2)rF3, E13 = (F1∩F3)rF2, and E23 = (F2∩F3)rF1.

(a) If E12, E13, and E23 = ∅ OR E12 = α 6= σ and E13, E23 = ∅ or σ, then Lk∆(F1 ∩ F2 ∩ F3) is
non-contractible.

(b) If E12 = α 6= σ and E13 = β 6= σ and E23 = ∅ or σ, then Lk∆(F1 ∩ F2 ∩ F3) is contractible.

(c) If E12 = α 6= σ, E13 = β 6= σ, and E23 = γ 6= σ, then Lk∆(F1 ∩ F2 ∩ F3) is non-contractible.

Statement If F1 ∩ F2 ∩ F3 = ∅, then Lk(Fi ∩ Fj) is non-contractible. The proof for case 1 in Theorem 3.1
is as follows:
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Proof. Suppose F1 ∩ F2 ∩ F3 = ∅. Then, the only non-empty intersections are pairwise intersections. By
Lemma 2.2, the link of any pairwise intersection, that is not a triplewise intersection, is non-contractible.

Statement If F1 ∩ F2 ∩ F3 6= ∅ and exactly zero or one pairwise intersection is not equal to the triplewise
intersection, then the link of the triplewise intersection is disconnected and thus non-contractible. The proof
for case 2a in Theorem 3.1 is as follows:

Proof. Let F1 ∩ F2 ∩ F3 = σ 6= ∅. There is at most one pairwise intersection of facets that is not equal to
the triplewise intersection, so we can select one facet for which all pairwise intersections are equal to the
triplewise intersection. Without loss of generality, suppose this facet is F3. Then, F1 ∩ F3 = F2 ∩ F3 = σ.
Consider the link of σ, Lkσ(∆). The facets of Lkσ(∆) are (F1 r σ), (F2 r σ), (F3 r σ). Now, consider the
intersections of the facets of the link. We know (F1 r σ) ∩ (F3 r σ) = (F1 ∩ F3) r σ = σ r σ = ∅. The same
holds for (F2 r σ) ∩ (F3 r σ). Thus, (F3 r σ) is disjoint from (F1 r σ) and (F2 r σ). Therefore, Lkσ(∆) is
disconnected and thus is non-contractible.

Statement If F1 ∩ F2 ∩ F3 6= ∅ and exactly two pairwise intersections are not equal to the triplewise
intersection, then the link of the triplewise intersection is contractible. The proof for case 2b in Theorem 3.1
is as follows:

Proof. Let F1 ∩ F2 ∩ F3 = σ 6= ∅. Without loss of generality, let the two pairwise intersections distinct
from the triplewise intersection be F1 ∩ F2 = a, F2 ∩ F3 = b. We define the set of facets of Lkσ(∆) as
L∆(σ) = {(F1 r σ), (F2 r σ), (F3 r σ)}. These facets have two pairwise intersections, a∗ = a r σ and
b∗ = br σ, and all other intersections are empty. Therefore, the nerve, N (L∆(σ)), is as follows:

a∗

F1 r σ
b∗

F2 r σ
b∗

F3 r σ

Figure 1: Nerve of ∆

So, by Lemma 2.3 the link of σ is homotopy-equivalent to a path and thus is contractible.

Statement If F1 ∩ F2 ∩ F3 6= ∅ and exactly three pairwise intersections are distinct and not equal to the
triplewise intersection, then the link of the triplewise intersection has a hole and is therefore non-contractible.
The proof for case 2c in Theorem 3.1 is as follows:

Proof. Let F1∩F2∩F3 = σ 6= ∅. Let the pairwise intersections that are distinct from the triplewise intersection
be F1∩F2 = a, F2∩F3 = b and F1∩F3 = c. Consider the link, Lkσ(∆). We define the set of facets of Lkσ(∆)
as L∆(σ) = {F1 r σ, F2 r σ, F3 r σ}. These facets have three pairwise intersections: a∗ = ar σ, b∗ = br σ,
c∗ = crσ and no triplewise intersection since (F1 rσ)∩ (F2 rσ)∩ (F3 rσ) = (F1∩F2∩F3)rσ = σrσ = ∅.
Therefore, the nerve, N (L∆(σ)), is the following simplicial complex:

20

F1 r σ
20

F2 r σ

20

F3 r σ

Figure 2: Nerve of ∆

N (L∆(σ)) contains a hole and is therefore non-contractible. Thus, by Lemma 2.3, Lk∆(σ) ' N (L∆(σ))
implies Lk∆(σ) is non-contractible.

5



3.2 Implication for codes

In this section we discuss the implications of our contractibility results, and show that no local obstructions
⇒ max intersection-complete and therefore no local obstructions ⇒ convex.

Theorem 3.2. Let C be a neural code with three maximal codewords. Then C is convex ⇔ C has no local
obstructions.

Theorem 3.3. Let C be a neural code with exactly three maximal codewords, c1, c2, c3, and assume that C
has no local obstructions. Then,

1. If c1 ∩ c2 ∩ c3 = σ 6= ∅ and there are exactly two pairwise intersections that are distinct from the
triplewise intersection, then the link of σ is contractible and C is convex.

2. If c1 ∩ c2 ∩ c3 = σ 6= ∅ and there are exactly zero, one, or three pairwise intersections that are distinct
from the triplewise intersection, then the link of σ is non-contractible, thus the code is convex.

3. If c1 ∩ c2 ∩ c3 = ∅, then the link of every intersection is non-contractible, thus the code is convex.

Proof. Let C be a neural code with exactly three maximal codewords, c1, c2, c3 and assume there are no local
obstructions.

1. In the case where c1 ∩ c2 ∩ c3 = σ 6= ∅ and there are exactly two pairwise intersections that are
distinct from the triplewise intersection, the link of σ is contractible and C is not required to be max
intersection-complete in order to have no local obstructions. We show that no local obstructions implies
convexity by providing, in the following section, a convex realization of C.

2. In the case where c1∩c2∩c3 = σ 6= ∅ and there are exactly zero, one, or three pairwise intersections that
are distinct from the triplewise intersection, the link of σ is non-contractible. Since every intersection is
a local obstruction if not included in C, we must include all intersections to have no local obstructions,
thus getting max intersection-complete, which implies convexity by Lemma 2.1.

3. In the case where c1 ∩ c2 ∩ c3 = ∅, the link of every intersection is non-contractible. Similar to the
previous case, since every intersection is a local obstruction if not included in C, we must include
all intersections to have no local obstructions, thus getting max intersection-complete which implies
convexity by Lemma 2.1.

3.3 Convex Realization for Codes with 2 Pairwise Intersections Distinct from
the Triplewise

In this section we provide a convex realization for neural codes C with three maximal codewords Fa, Fb, Fc
such that Fa ∩ Fb ∩ Fc = σ 6= ∅, Fa ∩ Fb 6= σ, Fb ∩ Fc 6= σ and Fa ∩ Fc = σ. Since the link of the triplewise
intersection is contractible, as shown above, a convex realization is needed in these cases to prove convexity.

Theorem 3.4. Assume ∆ is a simplicial complex with exactly three facets Fa, Fb, and Fc such that
Fa ∩ Fb ∩ Fc = σ 6= ∅ with exactly two pairwise intersections distinct from the triplewise intersection.
Then the construction below yields a convex realization in R for Cmin(∆). (Cmin(∆) is the smallest code
with respect to inclusion with simplicial complex ∆ that has no local obstructions.)

For the neural code, C, the minimal code Cmin(∆) consists of all facets of ∆ and all codewords with non-
contractible links. We have previously shown that the link of the triplewise intersection is contractible,
thus the minimal code is Cmin(∆) = {∅, Fa, Fb, Fc, Fa ∩ Fb, Fb ∩ Fc}. Both convex open and convex closed
realizations of Cmin(∆) can be constructed in R such that the codewords appear in the following order:

0

0
1

1
2

2
3

3
4

4
5

5

Fa Fa ∩ Fb Fb Fb ∩ Fc Fc ∅∅
R

Figure 3: Realization of Cmin(∆) in R
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The following is an explicit construction of a convex realization, U = {Ui}, in R for Cmin(∆).

For each neuron, x, in C:

• If x ∈ Fa ∩ Fb ∩ Fc, construct Ux as region (0,5) for open or [0,5] for closed in R

• If x ∈ Fa ∩ Fb, but x /∈ Fc, construct Ux as region (0,3) for open or [0,3] for closed in R

• If x ∈ Fb ∩ Fc, but x /∈ Fa, construct Ux as region (2,5) for open or [2,5] for closed in R

• If x ∈ Fa, but x /∈ Fb and x /∈ Fc, construct Ux as region (0,1) for open or [0,1] for closed in R

• If x ∈ Fb, but x /∈ Fa and x /∈ Fc, construct Ux as region (2,3) for open or [2,3] for closed in R

• If x ∈ Fc, but x /∈ Fa and x /∈ Fb, construct Ux as region (4,5) for open or [4,5] for closed in R

Proof. We now show that the realization gives us the desired code, Cmin(∆), by demonstrating that it
contains all codewords in Cmin(∆) and no other codewords. It is evident, by the way in which the realization
is constructed, that each codeword appears in the following intervals of the construction:

• Fa in the interval (0, 1)

• Fb in the interval (2, 3)

• Fc in the interval (4, 5)

• Fa ∩ Fb in the interval (1, 2)

• Fb ∩ Fc in the interval (3, 4)

• ∅ in the interval (5, 6)

Now we show that no codewords exist in the realization that are not included in Cmin(∆). We have shown
that each 1-unit interval corresponds to a codeword in Cmin(∆). Similarly, the endpoints of each interval
also represent codewords in Cmin(∆). The points left to define are the endpoints of the intervals: 1, 2, 3, 4, 5.

In the case of a closed, convex realization, the open intervals are replaced by closed, and the points 1, 2, 3, 4, 5
represent the codewords Fa, Fb, Fb, Fc, Fc, respectively. Each endpoint marks a location where neurons from
both an intersection of maximal codewords and one of the maximal codewords meet. The neurons in the
intersections of two maximal codewords must be contained in the maximal codewords themselves, therefore
each endpoint holds only the neurons in the larger facet. Thus, the endpoint represents the maximal codeword.

In the case of a convex open realization, the points 1, 2, 3, 4, 5 represent the codewords Fa∩Fb, Fa∩Fb, Fb∩Fc,
Fb ∩ Fc, and ∅ respectively. The neurons that exist at each endpoint are only those neurons whose interval
extends to either side of the endpoint. An examination of the intervals defined above provides the neurons
at each endpoint to be the neighboring intersection of maximal codewords and for the case of 5, the empty
set.

Example 3.1. Consider the neural code, Cmin(∆) = {∅, 123, 124, 1356, 13, 12}. Following Theorem 3.3,
Cmin(∆) can be realized in R in the following way:

0

0
1

1
2

2
3

3
4

4
5

5

124 12 123 13 1356 ∅∅
R

Figure 4: Realization of the code in R (codewords are labeled)
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0
1

1
2

2
3

3
4

4
5

5
6

6

a a U1

aU2 a

a a U3

aU4 a

a a U5

aU6 a

Figure 5: Arrangement of individual neurons of code in R

The example includes all of the necessary codewords, with no extra codewords appearing. It can be considered
convex open or convex closed.

3.4 Convex Construction in R2

In the previous section, we provided both convex open and convex closed realizations in R for minimal
codes with three maximal codewords, a non-empty triplewise intersection, and exactly two unique pairwise
intersections distinct from the triplewise intersection. We will show how this realization can be used to
construct convex open and convex closed realizations for any code C such that Cmin(∆) ⊆ C ⊆ ∆. We start
with the case where there are two distinct pairwise intersections.

Theorem 3.5. Let ∆ be a simplicial complex with three facets, Fa, Fb, Fc such that the triplewise inter-
section is nonempty and there are exactly two nonempty, pairwise intersections distinct from the triplewise
intersection. Then, for any code C such that Cmin(∆) ⊆ C ⊆ ∆, there is a convex open and convex closed
realization of C in R2.

Proof. We will provide an explicit convex open and convex closed construction for a code C and show that
the construction contains all codewords in C and no additional codewords.

Start with the realization of the minimal code, Cmin(∆) = {Fa, Fb, Fc, Fa ∩ Fb, Fb ∩ Fc}, in R which can be
achieved following the construction in Theorem 3.4. Expand the 1-dimensional realization to a ball in R2, as
shown below in Figure 6.

Fa Fb FcFa ∩ Fb Fb ∩ Fc

Figure 6: Realization of Cmin(∆) in R2

It is clear by Theorem 3.4 that the construction contains all codewords ci ∈ Cmin(∆) and no additional
codewords. Now, all codewords cj ∈ C \ Cmin can be added to the realization by using lines to “slice” the
boundary of regions of the ball and “roll back” the receptive fields of certain neuron(s) to obtain a region for
the desired codeword.

More specifically, let S be the set of all codewords cj ∈ C \ Cmin(∆). By definition, all cj ∈ S are contained
in some facet, Fi ∈ Cmin. Thus, our set S can be partitioned into three subsets: S1, S2, and S3 where the
elements of the subset Si are all codewords cj ∈ S such that cj ⊆ Fi. Let ni be the number of elements of
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subset Si. We will proceed by induction on ni to show that, for an arbitrary set Si, all codewords are realized
in the construction.

The base case of ni = 0 is simple in its construction. There are no codewords contained in Si and therefore,
no additional regions to be constructed in the realization.

Consider the ni = 1 case where there is one codeword c1 ∈ Si. Construct a region for this codeword in the
realization by selecting two points a1, b1 on the circle such that a1, b1 ∈ UFi

. Let a1 be the point adjacent to
the endpoint of the arc of the circle containing all points in UFi

. Let b1 be the mid point of this arc. Let L
be a line through a1 and b1 such that L ∩ Uσ 6= ∅ if and only if σ = Fi. This line breaks R2 into a convex,
closed half-space that only intersects the ball in the region corresponding to c1 and a convex, open half-space,
H, that intersects all other regions of the ball. For all neurons j ∈ Fi \ c1, replace the receptive field Uj by
Uj ∩H. This leaves a region with only neurons contained in c1 as desired.

We now assume that we can form such regions for ni = k codewords and show that the construction holds
for the case of ni = k + 1.

By the inductive hypothesis, there is a realization for ni = k codewords. We follow the same steps described
above to add the additional codeword ck+1. Consider the arc of the circle containing all points in UFi

. Select
two points, ak+1, bk+1 ∈ UFi

, along this arc such that ak+1 is the point adjacent to the point bk and bk+1

is the midpoint of the arc containing all points in UFi
. Let Lk+1 be the line segment connecting ak+1 and

bk+1. Again, we consider the half-spaces formed by the line in R2. The closed half-space that intersects with
the ball only in the region corresponding to ck+1. The open half-space, H, intersections all other regions of
the ball. For all neurons j ∈ Fi \ ck+1, replace the receptive field Uj be Uj ∩ H. This results in a region
corresponding to ck+1 as desired.

Thus, by induction, we can realize any number of codewords ni in each C ′i.

An example of lines “slicing” the realization of the minimal code realization in R2 to create new codewords
c1, c2 is shown in Figure 7 below:

Fa Fb FcFa ∩ Fb Fb ∩ Fcc1 ⊂ Fa −→ ←− c2 ⊂ Fc

Figure 7: Realization of the code C = {Fa, Fb, Fc, Fa ∩ Fb, Fb ∩ Fc, c1, c2}

To complete the proof, we show that there are no regions corresponding to codewords not contained in C.
The only areas where new codewords may appear is on the boundary between two existing regions. The
proof of Theorem 3.4 shows that no additional codewords appear on the boundaries between the regions
corresponding to the facets and their intersections. We now consider the boundaries created when additional
codewords are added.

By the construction, for any additional codeword c, the region corresponding to c shares a single boundary
with the region corresponding to the facet, Fi, of which c is a subset.

• For a convex open realization, the boundary corresponds to the neurons that are shared between c and
Fi, which is all neurons in c and therefore the boundary represents the codeword c which is in C.
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• For a convex closed realization, the boundary corresponds to all neurons in c and all neurons in Fi.
Since all neurons in c are contained in Fi, the boundary represents exactly the neurons in Fi and
therefore the codeword Fi which is in C.

Thus, the realization in R2 given be the above construction, contains every codeword in C and no additional
codewords. We have then provided a construction of an open convex and closed convex realization of C in
R2.

Example 3.2. Consider the code from Example 3.1, Cmin(∆) = {∅, 123, 124, 1356, 13, 12}. By Theorem 3.4,
the code, C, obtained by adding the codewords {24, 23, 6, 5} can be realized in R2 as follows:

124 123 135612 13

24 6

5

23

— : U1

— : U2

— : U3

— : U4

— : U5

— : U6

Figure 8: Realization of C = {∅, 124, 123, 1356, 12, 13, 5, 6, 23, 24} in R2

3.5 Embedding Dimension of Minimal Codes

Below we generalize the minimal embedding dimension for codes with 3 maximal codewords. By Lemma 2.3,
such codes can be realized in R2 , however we make further specifications indicating certain minimal codes
can be realized in R1.

Theorem 3.6. Let ∆ be a simplicial complex with exactly 3 facets Fa, Fb, and Fc.

1. If Fa∩Fb∩Fc = ∅ or Fa∩Fb∩Fc = σ 6= ∅ and each pairwise intersection, Fa∩Fb, Fa∩Fc, and Fb∩Fc,
is distinct from Fa ∩ Fb ∩ Fc, then the minimal embedding dimension is 2.

2. In all other cases, the minimal embedding dimension is 1.

Proof. Let ∆ be a simplicial complex with facets Fa, Fb, and Fc, and let Cmin(∆) be the neural code of
simplicial complex ∆.

1. If there are exactly 3 pairwise intersections that are distinct from the triplewise intersection, then the
minimal code has both convex open and convex closed realizations in R2, as shown by the image below.

Let Cmin be a neural code with maximal codewords Fa, Fb, and Fc such that Fa∩Fb∩Fc = ∅, Fa∩Fb = α,
Fa ∩ Fc = β, and Fb ∩ Fc = γ. Then the following minimal code has both convex open and convex
closed realizations in R2 as shown below. For cases in which Fa ∩ Fb ∩ Fc = σ and all other criteria
hold, the middle region changes from ∅ to σ.
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Fa ∩ Fb

Fa Fc

Fa ∩ Fc
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— : U1

— : U2

— : U3

Figure 9: Realization of Cmin in R2

2. If there are 0, 1, or 2 pairwise intersections that are distinct from the triplewise intersection, then the
minimal code has both convex open and convex closed realizations in R.
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Figure 10: Realization of C in R (Fa ∩ Fb ∩ Fc = ∅, 0 pairwise intersections)
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Figure 11: Realization of C in R (Fa ∩ Fb ∩ Fc = σ, 0 pairwise intersections)
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Figure 12: Realization of C in R (Fa ∩ Fb ∩ Fc = ∅, 1 pairwise intersection)
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Figure 13: Realization of C in R (Fa ∩ Fb ∩ Fc = σ, 1 pairwise intersections)
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Figure 14: Realization of C in R (Fa ∩ Fb ∩ Fc = ∅, 2 pairwise intersections)
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Figure 15: Realization of C in R (Fa ∩ Fb ∩ Fc = σ, 2 pairwise intersections)

In cases where the embedding dimension is 1, Convex Neural Codes in R [5] offers further characteri-
zation of the codes.

Below is a table that summarizes the minimal embedding dimensions for codes with 3 maximal codewords:

Table 1: Minimal embedding dimension of Cmin(∆), based on the number of pairwise intersections that are
distinct from the triplewise intersection

Embedding Dimension Number of Pairwise Intersections Distinct from the Triplewise
0 1 2 3

1 X X X
2 X

3.6 Minimal Embedding Dimension

In this section, we expand upon the results of the previous table. That table indicates the smallest embedding
dimension for minimal codes with 3 facets. An expansion similar to that shown in Section 3.4, has both a
convex open and convex closed realization for any code, C, with Cmin(∆) ⊆ C ⊆ ∆.

Theorem 3.7. If C is a neural code with exactly three maximal codewords, then the minimal embedding
dimension is at most 2.

Proof. By Theorem 3.6, if a code C has exactly three maximal codewords, then the embedding dimension of
Cmin(∆) is 1 or 2.

If Cmin(∆) has an embedding dimension of 1. Then, in the proof of Theorem 3.4, we provided an explicit
construction in R2 of the code C whose minimal code Cmin(∆) can be realized in R. Otherwise, if the
embedding dimension of Cmin(∆) is 2, the code C can be realized in R2 following a similar construction to
that provided in the proof of Theorem 3.4. First start with the realization of the minimal code in R2 as
depicted in Figure 9. The rectangular regions can be morphed into elliptical regions as shown below in Figure
16. From here, the construction and proof is the same as in Theorem 3.4. Lines are used to intersect regions
of the ball to “rollback” neurons and create regions for the new codewords.

Thus, in both cases, the embedding dimension of the full code C is R2 as desired.
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Fa ∩ Fb

Fa Fc

Fa ∩ Fc

Fb Fb ∩ Fc

∅

c1 ∈ Fb ⊂ ∆

c2 ∈ Fa ⊂ ∆ c3 ∈ Fc ⊂ ∆

Figure 16: Realization of C in R2 when there are 3 pairwise intersections

Figure 16 depicts the convex realization of the mode C = {∅, Fa, Fb, Fc, Fa ∩Fb, Fa ∩Fc, Fb ∩Fc, c1, c2, c3} in
R2 constructed using the construction provided in the proof of Theorem 3.7.
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