Optimality of Root Spacing and Complexity Bounds for Trinomials over p-adic Fields

Elliott Fairchild

July 2021

Abstract

For a univariate trinomial $f(x) = c_1 + c_2 x^{a_2} + c_3 x^{a_3}$, we review a method to lift degenerate roots of f over $\mathbb{Z}/(p)$ to roots of f over \mathbb{Q}_p . We use this technique to show partial optimality of the logarithmic root closeness bound of $-O(p \log^2(a_3 H) \log_p(a_3))$ recently proven by Rojas and Zhu, and give full optimality of a bound on the efficiency of this technique.

1 Introduction

Let $f(x) = c_1 + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$, $0 < a_2 < a_3$, be a univariate trinomial. Computing bounds on the distances between roots of f over \mathbb{Q}_p induces faster solving f, which in turn encodes fast solving over $\mathbb{Z}/(p^k)$, a problem with applications in number theory and coding theory (see, e.g., [3, 6, 1]). Recent work of Rojas and Zhu [5] has shown that for ζ_1, ζ_2 roots of f, $\log |\zeta_1 - \zeta_2|_p \geq -O(p \log^2(a_3H) \log_p(a_3))$. We examine the optimality of this bound.

Theorem 1.1. Let f, p, H be as above, ζ_1 , ζ_2 roots of f. Then $\log |\zeta_1 - \zeta_2|_p = -\Omega(\log \max\{a_3, H\})$

Our result shows at least a linear dependence on a_3 , H. We are currently unaware of any examples with $\log |\zeta_1 - \zeta_2|_p = -\Omega(p^{\epsilon})$ for some $\epsilon > 0$.

We now give the tools and definitions relevant to our result. First, we recall the classical Hensel's lemma:

Lemma 1.2. (See, e.g., [2, Thm. 4.1 & Inequality (5.7)].) Let $f(x) \in \mathbb{Z}[x]$ and suppose $a \in \mathbb{Z}_p$ satisfies

 $f(a) = 0 \mod p, \quad f'(a) \neq 0 \mod p.$

Then there is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ in \mathbb{Z}_p and $\alpha = a \mod p$.

We next define a structure first introduced in [4] to extend Hensel's lemma to degenerate roots. We let $\operatorname{ord}_p : \mathbb{C}_p \to \mathbb{Q}$ be the standard *p*-adic valuation on \mathbb{C}_p :

Definition 1.3. [4] Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f} , define $s(f,\zeta) := \min_{i\geq 0}\{i + \operatorname{ord}_p \frac{f^{(i)}(\zeta)}{i!}\}$. For $k \in \mathbb{N}, i \geq 1$, define inductively a set $T_{p,k}(f)$ of pairs $(f_{i-1,\mu}, k_{i-1,\mu}) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows: Set $(f_{0,0}, k_{0,0}) := (f,k)$, then for $i \geq 1$ with $(f_{i-1,\mu}, k_{i-1,\mu}) \in T_{p,k}(f)$, and any degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ with $s_{i-1} := s(f_{i-1}, \zeta_i - 1)$, let $\zeta := \mu + \zeta_{i-1}p^{i-1}, k_{i,\zeta} := k_{i-1,\mu} - s_{i-1}, f_{i,\zeta}(x) := p^{-s(f_{i-1,\mu},\zeta_{i-1})}f_{i-1,\mu}(\zeta_{i-1} + px) \mod p^{k_{i,\zeta}}$, and include $(f_{i,\zeta}, k_{i,\zeta})$ in $T_{p,k}(f)$.

The pairs $(f_{i,\mu}, k_{i,\mu})$ form the nodes of a tree structure, which we now define.

Definition 1.4. [4] Define $\mathcal{T}_{p,k}(f)$ inductively as follows:

(i) Set $f_{0,0} = f$, $k_{0,0} = k$, and let $(f_{0,0}, k_{0,0})$ be the label of the root node of $\mathcal{T}_{p,k}(f)$.

(ii) The non-root nodes of $\mathcal{T}_{p,k}(f)$ are labeled uniquely by the $(f_{i,\zeta}, k_{i,\zeta}) \in T_{p,k}(f)$ for $i \geq 1$.

(iii) There is an edge from node $(f_{i-1,\mu}, k_{i-1,\mu})$ to node $(f_{i,\zeta}, k_{i,\zeta})$ iff there is a degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ of $\tilde{f}_{i-1,\mu}$ with $s(f_{i-1,\mu}, \zeta_{i-1}) \in \{2, \ldots, k_{i-1,\mu} - 1\}$ and $\zeta = \mu + \zeta_{i-1}p^{i-1} \in \mathbb{Z}/(p^i)$.

Example 1.5. Consider the binomial $f_{0,0} = f(x) = x^9 - 1$ over \mathbb{Z}_3 , and let $k_{0,0} \ge 4$. Then 1 is the degenerate root of $f \mod 3$. We find s(f,1) = 3, and $f_{1,1} = 3^{-3}(1+3x)^9 = x \mod 3$. As the root 0 of $f_{1,1}$ is non- degenerate, the root $1+0\cdot 3+\ldots$ lifts by Hensel's Lemma. Further, this is the only root of f in \mathbb{Z}_3 .

The nodes of $\mathcal{T}_{p,k}(f)$ indeed encode the base-p digits of roots f over \mathbb{Z}_p :

Lemma 1.6. [4, Lem. 2.2 &.6] Suppose $f \in \mathbb{Z}[x] \setminus p\mathbb{Z}[x]$ has degree d, $f_{0,0} := f$, $i \geq 1, \mu := \zeta_0 + \dots + p^{i-2}\zeta_{i-2}$ is a root of the mod p^{i-1} reduction of f, $\zeta' := \mu + p^{i-1}\zeta_{i-1}$, the pairs $(f_{i-1,\mu}, k_{i-1,\mu})$ and $(f_{i-1,\zeta'}, k_{i-1,\zeta'})$ both lie in $\mathcal{T}_{p,k}(f)$, and ζ_{i-1} has multiplicity m as a root of $\tilde{f}_{i-1,\mu}$ in \mathbb{F}_p . Then $\mathcal{T}_{p,k}(f)$ has depth $\leq \lfloor (k-1)/2 \rfloor$ and at most $\lfloor d/2 \rfloor$ nodes at depth $i \geq 1$. Also, deg $\tilde{f}_{i,\zeta'} \leq s(f_{i-1,\mu}, \zeta_{i-1}) \leq \min\{k_{i-1,\mu}, m\}$, and $f_{i,\zeta'}p^{-s}f(\zeta_0+\zeta_1p+\dots+p^ix)$, where $s := \sum_{j=0}^{i-1} s(f_{j,\zeta_0+\dots+\zeta_{i-1}p^{j-1}}) \geq 2i$. In particular, $f(\zeta_0+\zeta_1p+\dots+\zeta_{i-1}p^{i-1}) = 0$ mod p^s and $f'(\zeta_0+\zeta_1p+\dots+\zeta_{i-1}p^{i-1}) = 0 \mod p^i$

The first statement of the lemma above implies that k must be sufficiently large for the depth of $\mathcal{T}_{p,k}(f)$ to be large enough to detect non-degenerate roots of f (if they exist). For any binomial $f = c_0 + c_1 x^d$ with $c_0 c_1 \neq 0 \mod p$, it is known that $\mathcal{T}_{p,k}(f)$ has depth at most 1, and that $k > s(f_{0,0}, \zeta_0)$ is large enough for $\mathcal{T}_{p,k}(f)$ to achieve its maximal depth. For trinomials, such a sufficiently large k is determined in [5].

Proposition 1.7. [5, Coroll. 6.6] Suppose $f(x) = c_1 + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$ has degree d, $0 < a_2 < a_3$, $p \nmid c_1 c_2 c_3$. Let S_0 be the maximum of $s(f, \zeta_0)$ for any degenerate root of f over $\mathbb{Z}/(p)$, and define D to to be the maximum of $\operatorname{ord}_p(\zeta_1 - \zeta_2)$ over all distinct non-degenerate roots ζ_1 , ζ_2 of f over \mathbb{Z}_p , or 0 if

there are fewer than two distinct non-degenerate roots of f. Finally, define M_p to be 4, 3, 2, according to $p = 2, p = 3, p \ge 5$. Then

$$k \ge 1 + S_0 \min\{1, D\} + M_p \max\{D - 1, 0\}$$

guarantees $\mathcal{T}_{p,k}(f)$ has depth $\geq D$.

As the complexity of solving algorithms is dependent on k [5], our goal is to determine the *smallest* k so that $\mathcal{T}_{p,k}(f)$ has depth D as above. It turns out that the k given above is optimal:

Theorem 1.8. For $p \ge 5$, there exist trinomials $f = c_1 + c_2 x^{a_2} + c_3 x^{a_3}$ such that $\mathcal{T}_{p,k}(f)$ has depth $\ge D \implies k \ge 1 + S_0 \min\{1, D\} + M_p \max\{D-1, 0\}$.

2 Proofs

We prove Theorems 1 and 2 by examining the trees of two families of examples.

Example 2.1. Consider the family $g_p(x) = x^2 - (2+p^j)x + 1+p^j$. Constructing $T_{p,k}(g_p)$ with $f_{0,0} = g_p$, we see that $\tilde{f_{0,0}} = x^2 - 2x + 1$, so that 1 is the unique degenerate root of $\tilde{f_{0,0}}$. We obtain $s(f_{0,0}, 1) = 2$, and compute $k_{1,1} = k_{0,0} - 2$ and $f_{1,1} = p^{-2}((1+px)^2 - (2+p^j)x + 1+p^j) = p^{-2}(p^2x^2 - p^jx) = x^2 - p^{j-1}x \mod p^{k_{1,1}}$. Proceeding, we find $s(f_{i,1}, 0) = 2$, $k_{i,1} = k_{i-1,1} - 2$, and $f_{i,1} = x^2 - p^{j-i}x \mod p^{k_{i,1}}$ for all i > 1. At i = j, $f_{j,1+\dots+0\cdot p^{j-1}} = x^2 - x$, so that we obtain non-degenerate roots 1 and $1+p^j$ that lift uniquely by Hensel's Lemma. Clearly, it is necessary that $k \ge 1+2j = 1+2+2(j-1) = 1+2+2(j-1) = 1+S_0+2D$ for the roots to be discovered, and that $|\log|(1+p^j)-1|_p| = O(\log(H-2))$.

Example 2.2. Consider now the family $h_p(x) = x^{2+p^j} - 2x + 1$. We again set $f_{0,0} = h_p$ and have that 1 is a degenerate root of $f_{0,0}$, and compute $s(f_{0,0}, 1) = 2$, $k_{1,1} = k_{0,0} - 2$, $f_{1,1} = p^{-2}((1 + px)^{2+p^j} - 2(1 + px)) = p^{-2}(p^{j+1}x + (p^j + 2)(p^j + 1)p^2x^2 + higher order terms) = p^{j-1}x + x^2 \mod p^{k_{1,1}}$. We note that the "higher order terms" in the binomial expansion of $f_{1,1}$ are killed off in its reduction mod-p. We then have $s(f_{1,1}, 0) = 2$, $k_{2,1} = k_{1,1} - 2$ and see that all higher order terms of $f_{1,1}$ increase in powers of p in $p^{-2}f_{1,1}(px)$, so that more terms disappear mod $p^{k_{2,1}}$. Proceeding, we see that for i > 1, $s(f_{1,i-1}, 0) = 2$, $k_{i,1} = k_{i-1,1} - 2$, and $f_{i,1} = p^{j-1}x + x^2$. At i = j, we obtain non-degenerate roots 1 and $1 + (p-1)p^j$ that lift uniquely by Hensel's Lemma, yielding a necessary $k \ge 1+2j = 1+2+2(j-1) = 1+2+2(j-1) = 1+S_0+2D$, and $|\log|(1+(p-1)p^j)-1|_p| = O(\log(a_3-2))$.

3 Future directions

It is not a priori clear if the phenomena described in either of the theorems occur generically, or if there is a particular relation between the coefficients and degrees of monomial terms of f that governs this extremal behavior. One immediate

direction to pursue is numerical testing of random f - namely, one implements the root solving algorithms described in [5] and determines for which f root spacing and k are extremal. As we are currently unaware of any trinomials with attaining the full $O(p \log^2(a_3H) \log_p(a_3))$ bound, numerical experiments could serve to find examples with even more tightly packed roots.

It is unclear what the relationship between the necessary k for depth D and the closeness of roots is; while both families of examples provided achieve both extremes simultaneously, it is not obvious that the relationship holds for all extremal f. Heuristically, it makes sense that that large k and close roots are related - both come from a tree with high depth. Making more precise this relationship would provide information on when either of the phenomena occur.

4 Acknowledgements

I would like to thank Professor Maurice Rojas for his constant support and patience in answering my many questions throughout this project. I would also like to thank Josh Goldstein in helping me through my technical difficulties throughout the REU. I am grateful for Texas A&M University and NSF NSF REU grant DMS-1757872 for providing me with and supporting me through this opportunity.

References

- Jèrèmy Berthomieu, Grègoire Lecerf, and Guillaume Quintin. Polynomial root finding over local rings and application to error correcting codes. *Appl. Algebra Eng. Commun. Comput.*, 24:413–443, 2013.
- [2] Keith Conrad. Notes on Hensel's Lemma. Downloadable from kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf, 2021.
- [3] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast integer multiplication using modular arithmetic. SIAM J. Comput., 42(2):685–699, 2013.
- [4] Leann Kopp, Natalie Randall, J. Maurice Rojas, and Yuyu Zhu. Randomized Polynomial-Time Root Counting in Prime Power Rings. *Mathematics of Computation*, 89(321):373–385, January 2020.
- [5] J. Maurice Rojas and Yuyu Zhu. A complexity chasm for solving univariate sparse polynomial equations over *p*-adic fields (extended version with appendix). ArXiv, https://arxiv.org/abs/2003.00314, 2021.
- [6] Jeremy Rouse, Andrew V. Sutherland, and David Zureick-Brown. *l*-adic images of galois for elliptic curves over Q. ArXiv, arXiv:2106.11141, 2021.